Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Error prediction for large optical mirror processing robot based on deep learning
ID
Jin, Zujin
(
Avtor
),
ID
Cheng, Gang
(
Avtor
),
ID
Xu, Shichang
(
Avtor
),
ID
Yuan, Dunpeng
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,73 MB)
MD5: 2D6FE3CB3D118B447053E01492C516C0
URL - Izvorni URL, za dostop obiščite
https://www.sv-jme.eu/sl/article/error-prediction-for-large-optical-mirror-processing-robot-based-on-deep-learning-2/
Galerija slik
Izvleček
Predicting the errors of a large optical mirror processing robot (LOMPR) is very important when studying a feedforward control error compensation strategy to improve the motion accuracy of the LOMPR. Therefore, an end trajectory error prediction model of a LOMPR based on a Bayesian optimized long short-term memory (BO-LSTM) was established. First, the batch size, number of hidden neurons and learning rate of LSTM were optimized using a Bayesian method. Then, the established prediction models were used to predict the errors in the X and Y directions of the spiral trajectory of the LOMPR, and the prediction results were compared with those of back-propagation (BP) neural network. The experimental results show that the training time of the BO-LSTM is reduced to 21.4 % and 15.2 %, respectively, in X and Y directions than that of the BP neural network. Moreover, the MSE, RMSE, and MAE of the prediction error in the X direction were reduced to 9.4 %, 30.5 %, and 31.8 %, respectively; the MSE, RMSE, and MAE of the prediction error in the Y direction were reduced to 9.6 %, 30.8 %, and 37.8 %, respectively. It is verified that the BO-LSTM prediction model could improve not only the accuracy of the end trajectory error prediction of the LOMPR but also the prediction efficiency, which provides a research basis for improving the surface accuracy of an optical mirror.
Jezik:
Angleški jezik
Ključne besede:
Bayesian optimization
,
error prediction
,
optical mirror processing
,
hybrid manipulators
,
hyperparametrics
,
deep learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Datum objave:
01.03.2022
Leto izida:
2022
Št. strani:
Str. 175-184
Številčenje:
Vol. 68, no. 3
PID:
20.500.12556/RUL-136403
UDK:
007.52:620.19
ISSN pri članku:
0039-2480
DOI:
10.5545/sv-jme.2021.7455
COBISS.SI-ID:
105665027
Datum objave v RUL:
29.04.2022
Število ogledov:
733
Število prenosov:
111
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Strojniški vestnik
Skrajšan naslov:
Stroj. vestn.
Založnik:
Zveza strojnih inženirjev in tehnikov Slovenije [etc.], = Association of Mechanical Engineers and Technicians of Slovenia [etc.
ISSN:
0039-2480
COBISS.SI-ID:
762116
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
09.02.2022
Vezano na:
Accepted for publication
Sekundarni jezik
Jezik:
Slovenski jezik
Naslov:
Napovedovanje napak robotov za obdelavo velikih optičnih zrcal na osnovi globokega učenja
Ključne besede:
Bayesova optimizacija
,
napovedovanje napak
,
obdelava optičnih zrcal
,
hibridni manipulatorji
,
hiperparametrika
,
globoko učenej
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Financial support for this work, provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
National Key R&D Program of China
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj