izpis_h1_title_alt

Error prediction for large optical mirror processing robot based on deep learning
ID Jin, Zujin (Avtor), ID Cheng, Gang (Avtor), ID Xu, Shichang (Avtor), ID Yuan, Dunpeng (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,73 MB)
MD5: 2D6FE3CB3D118B447053E01492C516C0
URLURL - Izvorni URL, za dostop obiščite https://www.sv-jme.eu/sl/article/error-prediction-for-large-optical-mirror-processing-robot-based-on-deep-learning-2/ Povezava se odpre v novem oknu

Izvleček
Predicting the errors of a large optical mirror processing robot (LOMPR) is very important when studying a feedforward control error compensation strategy to improve the motion accuracy of the LOMPR. Therefore, an end trajectory error prediction model of a LOMPR based on a Bayesian optimized long short-term memory (BO-LSTM) was established. First, the batch size, number of hidden neurons and learning rate of LSTM were optimized using a Bayesian method. Then, the established prediction models were used to predict the errors in the X and Y directions of the spiral trajectory of the LOMPR, and the prediction results were compared with those of back-propagation (BP) neural network. The experimental results show that the training time of the BO-LSTM is reduced to 21.4 % and 15.2 %, respectively, in X and Y directions than that of the BP neural network. Moreover, the MSE, RMSE, and MAE of the prediction error in the X direction were reduced to 9.4 %, 30.5 %, and 31.8 %, respectively; the MSE, RMSE, and MAE of the prediction error in the Y direction were reduced to 9.6 %, 30.8 %, and 37.8 %, respectively. It is verified that the BO-LSTM prediction model could improve not only the accuracy of the end trajectory error prediction of the LOMPR but also the prediction efficiency, which provides a research basis for improving the surface accuracy of an optical mirror.

Jezik:Angleški jezik
Ključne besede:Bayesian optimization, error prediction, optical mirror processing, hybrid manipulators, hyperparametrics, deep learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.03.2022
Leto izida:2022
Št. strani:Str. 175-184
Številčenje:Vol. 68, no. 3
PID:20.500.12556/RUL-136403 Povezava se odpre v novem oknu
UDK:007.52:620.19
ISSN pri članku:0039-2480
DOI:10.5545/sv-jme.2021.7455 Povezava se odpre v novem oknu
COBISS.SI-ID:105665027 Povezava se odpre v novem oknu
Datum objave v RUL:29.04.2022
Število ogledov:734
Število prenosov:111
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Strojniški vestnik
Skrajšan naslov:Stroj. vestn.
Založnik:Zveza strojnih inženirjev in tehnikov Slovenije [etc.], = Association of Mechanical Engineers and Technicians of Slovenia [etc.
ISSN:0039-2480
COBISS.SI-ID:762116 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:09.02.2022
Vezano na:Accepted for publication

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Napovedovanje napak robotov za obdelavo velikih optičnih zrcal na osnovi globokega učenja
Ključne besede:Bayesova optimizacija, napovedovanje napak, obdelava optičnih zrcal, hibridni manipulatorji, hiperparametrika, globoko učenej

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Financial support for this work, provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Financer:Drugi - Drug financer ali več financerjev
Program financ.:National Key R&D Program of China

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj