izpis_h1_title_alt

Gaussian mixture model based classification revisited : application to the bearing fault classification
ID Panić, Branislav (Avtor), ID Klemenc, Jernej (Avtor), ID Nagode, Marko (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,01 MB)
MD5: ED7275C14F3F82CB2C4E814D9F40D188
URLURL - Izvorni URL, za dostop obiščite https://www.sv-jme.eu/article/gaussian-mixture-model-based-classification-revisited-application-to-the-bearing-fault-classification/ Povezava se odpre v novem oknu

Izvleček
Condition monitoring and fault detection are nowadays popular topic. Different loads, enviroments etc. affect the components and systems differently and can induce the fault and faulty behaviour. Most of the approaches for the fault detection rely on the use of the good classification method. Gaussian mixture model based classification are stable and versatile methods which can be applied to a wide range of classification tasks. The main task is the estimation of the parameters in the Gaussian mixture model. Those can be estimated with various techniques. Therefore, the Gaussian mixture model based classification have different variants which can vary in performance. To test the performance of the Gaussian mixture model based classification variants and general usefulness of the Gaussian mixture model based classification for the fault detection, we have opted to use the bearing fault classification problem. Additionally, comparisons with other widely used non-parametric classification methods are made, such as support vector machines and neural networks. The performance of each classification method is evaluated by multiple repeated k-fold cross validation. From the results obtained, Gaussian mixture model based classification methods are shown to be competitive and efficient methods and usable in the field of fault detection and condition monitoring.

Jezik:Angleški jezik
Ključne besede:Gaussian mixture models, classification, bearing fault estimation, parameter estimation, performance of classification methods
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2020
Št. strani:Str. 215-226
Številčenje:Vol. 66, iss. 4
PID:20.500.12556/RUL-116199 Povezava se odpre v novem oknu
UDK:621.82(045)
ISSN pri članku:0039-2480
DOI:10.5545/sv-jme.2020.6563 Povezava se odpre v novem oknu
COBISS.SI-ID:17169179 Povezava se odpre v novem oknu
Datum objave v RUL:22.05.2020
Število ogledov:1243
Število prenosov:441
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Strojniški vestnik
Skrajšan naslov:Stroj. vestn.
Založnik:Zveza strojnih inženirjev in tehnikov Slovenije [etc.], = Association of Mechanical Engineers and Technicians of Slovenia [etc.
ISSN:0039-2480
COBISS.SI-ID:762116 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Preučevanje Gaussovih mešanih modelov za potrebe klasifikacije: raziskava na primeru klasifikacije napak v ležajih
Ključne besede:Gaussov mešan model, klasifikacija, ocena napak ležajev, ocena parametrov, uspešnost klasifikacijske metod

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:1000-18-0510

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj