Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Gaussian mixture model based classification revisited : application to the bearing fault classification
ID
Panić, Branislav
(
Avtor
),
ID
Klemenc, Jernej
(
Avtor
),
ID
Nagode, Marko
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,01 MB)
MD5: ED7275C14F3F82CB2C4E814D9F40D188
URL - Izvorni URL, za dostop obiščite
https://www.sv-jme.eu/article/gaussian-mixture-model-based-classification-revisited-application-to-the-bearing-fault-classification/
Galerija slik
Izvleček
Condition monitoring and fault detection are nowadays popular topic. Different loads, enviroments etc. affect the components and systems differently and can induce the fault and faulty behaviour. Most of the approaches for the fault detection rely on the use of the good classification method. Gaussian mixture model based classification are stable and versatile methods which can be applied to a wide range of classification tasks. The main task is the estimation of the parameters in the Gaussian mixture model. Those can be estimated with various techniques. Therefore, the Gaussian mixture model based classification have different variants which can vary in performance. To test the performance of the Gaussian mixture model based classification variants and general usefulness of the Gaussian mixture model based classification for the fault detection, we have opted to use the bearing fault classification problem. Additionally, comparisons with other widely used non-parametric classification methods are made, such as support vector machines and neural networks. The performance of each classification method is evaluated by multiple repeated k-fold cross validation. From the results obtained, Gaussian mixture model based classification methods are shown to be competitive and efficient methods and usable in the field of fault detection and condition monitoring.
Jezik:
Angleški jezik
Ključne besede:
Gaussian mixture models
,
classification
,
bearing fault estimation
,
parameter estimation
,
performance of classification methods
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2020
Št. strani:
Str. 215-226
Številčenje:
Vol. 66, iss. 4
PID:
20.500.12556/RUL-116199
UDK:
621.82(045)
ISSN pri članku:
0039-2480
DOI:
10.5545/sv-jme.2020.6563
COBISS.SI-ID:
17169179
Datum objave v RUL:
22.05.2020
Število ogledov:
1237
Število prenosov:
441
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Strojniški vestnik
Skrajšan naslov:
Stroj. vestn.
Založnik:
Zveza strojnih inženirjev in tehnikov Slovenije [etc.], = Association of Mechanical Engineers and Technicians of Slovenia [etc.
ISSN:
0039-2480
COBISS.SI-ID:
762116
Sekundarni jezik
Jezik:
Slovenski jezik
Naslov:
Preučevanje Gaussovih mešanih modelov za potrebe klasifikacije: raziskava na primeru klasifikacije napak v ležajih
Ključne besede:
Gaussov mešan model
,
klasifikacija
,
ocena napak ležajev
,
ocena parametrov
,
uspešnost klasifikacijske metod
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
1000-18-0510
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj