izpis_h1_title_alt

Kopule za končne porazdelitve : delo diplomskega seminarja
ID Štefan, Jaša (Avtor), ID Kokol-Bukovšek, Damjana (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Mojškerc, Blaž (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (640,12 KB)
MD5: 87EDF75168E451B454E3BC5ED25F1950

Izvleček
Pri obravnavanju odvisnosti med slučajnimi spremenljivkami pogosto uporabljamo funkcije s posebnimi lastnostmi, ki jim pravimo kopule. Za njih velja, da povezujejo porazdelitvene funkcije posameznih slučajnih spremenljivk z njihovo skupno porazdelitveno funkcijo. Kako so te povezane med sabo, nam pove Sklarov izrek, ki predstavlja teoretično podlago za uporabo kopul v praksi. V statistiki so pripravne, ker lahko s pomočjo kopule porazdelitev slučajnega vektorja ocenimo z ocenjenimi porazdelitvenimi funkcijami slučajnih spremenljivk. Pri ugotavljanju odvisnosti med slučajnimi spremenljivkami si lahko pomagamo tudi z merami odvisnosti. Med njimi sta najpogosteje uporabljeni Kendallov $\tau$ in Spearmanov $\rho$, ki ustrezata Scarsinijevi definiciji in sta posledično meri skladnosti. V primeru zveznih slučajnih spremenljivk je kopula za določeno skupno porazdelitveno funkcijo enolična. V diskretnem primeru pa temu ni več tako. Posledično naletimo na težave, saj se veliko lastnosti ne prenese v diskretni primer. Izkaže se, da teorija kopul v diskretnem primeru ni neuporabna, je pa potrebno biti previden pri njihovi uporabi.

Jezik:Slovenski jezik
Ključne besede:kopula, podkopula, Sklarov izrek, Carleyine meje, skladnost
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2018
PID:20.500.12556/RUL-102846 Povezava se odpre v novem oknu
UDK:519.2
COBISS.SI-ID:18430041 Povezava se odpre v novem oknu
Datum objave v RUL:09.09.2018
Število ogledov:1725
Število prenosov:290
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Copulas on count data
Izvleček:
When observing dependence between random variables we often use functions that have special characteristics, called copulas. They link distribution functions of one variable with their joint distribution function. Sklar’s theorem tells us exactly how they are linked together, and this presents theoretical background for using copulas in practice. They are helpful in statistics: we can use them to estimate distribution of random vector by estimating distribution functions of random variables. When measuring dependence between random variables, it can be helpful to use measures of dependence. Two of the most widely used are Kendall’s $\tau$ and Spearman’s $\rho$, and because they meet the criteria of Scarsini’s definition, they are both measures of concordance. In case of continuous random variables, copula linked with joint distribution functions is unique. However in discrete case that is no longer true. Therefore we run into troubles, as a lot of characteristics do not translate from continuous to discrete case. Nevertheless, copula theory can be useful in discrete case as well, but it has to be used with caution.

Ključne besede:copula, subcopula, Sklar’s theorem, Carley’s bounds, concordance

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj