izpis_h1_title_alt

Kopule za končne porazdelitve : delo diplomskega seminarja
ID Štefan, Jaša (Author), ID Kokol-Bukovšek, Damjana (Mentor) More about this mentor... This link opens in a new window, ID Mojškerc, Blaž (Comentor)

.pdfPDF - Presentation file, Download (640,12 KB)
MD5: 87EDF75168E451B454E3BC5ED25F1950

Abstract
Pri obravnavanju odvisnosti med slučajnimi spremenljivkami pogosto uporabljamo funkcije s posebnimi lastnostmi, ki jim pravimo kopule. Za njih velja, da povezujejo porazdelitvene funkcije posameznih slučajnih spremenljivk z njihovo skupno porazdelitveno funkcijo. Kako so te povezane med sabo, nam pove Sklarov izrek, ki predstavlja teoretično podlago za uporabo kopul v praksi. V statistiki so pripravne, ker lahko s pomočjo kopule porazdelitev slučajnega vektorja ocenimo z ocenjenimi porazdelitvenimi funkcijami slučajnih spremenljivk. Pri ugotavljanju odvisnosti med slučajnimi spremenljivkami si lahko pomagamo tudi z merami odvisnosti. Med njimi sta najpogosteje uporabljeni Kendallov $\tau$ in Spearmanov $\rho$, ki ustrezata Scarsinijevi definiciji in sta posledično meri skladnosti. V primeru zveznih slučajnih spremenljivk je kopula za določeno skupno porazdelitveno funkcijo enolična. V diskretnem primeru pa temu ni več tako. Posledično naletimo na težave, saj se veliko lastnosti ne prenese v diskretni primer. Izkaže se, da teorija kopul v diskretnem primeru ni neuporabna, je pa potrebno biti previden pri njihovi uporabi.

Language:Slovenian
Keywords:kopula, podkopula, Sklarov izrek, Carleyine meje, skladnost
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2018
PID:20.500.12556/RUL-102846 This link opens in a new window
UDC:519.2
COBISS.SI-ID:18430041 This link opens in a new window
Publication date in RUL:09.09.2018
Views:1719
Downloads:290
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Copulas on count data
Abstract:
When observing dependence between random variables we often use functions that have special characteristics, called copulas. They link distribution functions of one variable with their joint distribution function. Sklar’s theorem tells us exactly how they are linked together, and this presents theoretical background for using copulas in practice. They are helpful in statistics: we can use them to estimate distribution of random vector by estimating distribution functions of random variables. When measuring dependence between random variables, it can be helpful to use measures of dependence. Two of the most widely used are Kendall’s $\tau$ and Spearman’s $\rho$, and because they meet the criteria of Scarsini’s definition, they are both measures of concordance. In case of continuous random variables, copula linked with joint distribution functions is unique. However in discrete case that is no longer true. Therefore we run into troubles, as a lot of characteristics do not translate from continuous to discrete case. Nevertheless, copula theory can be useful in discrete case as well, but it has to be used with caution.

Keywords:copula, subcopula, Sklar’s theorem, Carley’s bounds, concordance

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back