izpis_h1_title_alt

Modeliranje pretoka igralnega časa med zaporednima dogodkoma na košarkarski tekmi
ID Mavrič, Luka (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,48 MB)
MD5: A456BBFBEECA5268675B3D75FE0949E2
PID: 20.500.12556/rul/17682551-7d15-45a3-88ad-f9988ded30a0

Abstract
V diplomskem delu smo reševali problem napovedovanja pretoka časa med dvema dogodkoma na košarkarski tekmi. Najprej smo preučili vhodne podatke, kjer so bile kombinacije dogodkov zapisane v kronološkem zaporedju. Podatke smo preoblikovali v obliko, primerno za uporabo v strojnem učenju. Pretok časa smo napovedovali s pomočjo linearne regresije, regresijskih dreves in nevronskih mrež. Vsak algoritem smo na kratko predstavili, poiskali najboljšo kombinacijo neodvisnih spremenljivk in ostalih parametrov ter na koncu predstavili najboljši model. V zaključku smo primerjali najboljše modele uporabljenih metod strojnega učenja. Najboljše rezultate je dosegla nevronska mreža, najslabše pa pričakovano linearna regresija. Za konec smo strnili naše ugotovitve ter predlagali še nekaj predlogov za izboljšave.

Language:Slovenian
Keywords:košarka, napovedovanje pretoka časa, linearna regresija, regresijska drevesa, nevronske mreže
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-99586 This link opens in a new window
Publication date in RUL:06.02.2018
Views:1157
Downloads:486
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modelling the Elapsed Time between Two Events in a Basketball Game
Abstract:
In this thesis, the problem of predicting the elapsed time between two events in a basketball game is researched. First, our input data consisting of combinations of events in chronological order is studied, and then, the data is prepared and transformed so that it becomes better suited for machine learning. The elapsed time is predicted with the help of linear regression, regression trees and neural networks. For each algorithm, a short description is created; further, the best combination of independent variables and other parameters is found and finally, the best model is presented. To conclude, the best models of the utilized machine learning methods are compared. The best results were achieved by neural networks, while linear regression, as expected, proved to be the worst. Finally, the findings are presented and a few suggestions for improvements are added.

Keywords:basketball, prediction of the elapsed time, linear regression, regression trees, neural networks

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back