izpis_h1_title_alt

Napovedovanje Alzheimerjeve bolezni z zlivanjem podatkov
ID Oder, Iztok (Author), ID Bosnić, Zoran (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (569,04 KB)
MD5: 405B148955C9A9A3AD882A3D2E8C7D98
PID: 20.500.12556/rul/0745a75f-0aae-4fe7-95a2-f1f30d60ead7

Abstract
Alzheimerjeva bolezen je vse bolj pereč problem v modernem svetu, saj se svetovno prebivalstvo stara. Ta zahrbtna nevrodegenerativna bolezen povzroča demenco in vpliva na vsakodnevno življenje tako obolelega kot njegovih oskrbnikov. Diagnoza bolezni je trenutno mogoča šele po smrti osebe, ki trpi za to boleznijo. Raziskovalci se zato trudijo z različnimi tipi podatkov in metodami izboljšati modele za dovolj zgodnje razlikovanje med zdravimi in obolelimi osebami. V magistrski nalogi obravnavamo napovedovanje Alzheimerjeve bolezni z uporabo zlivanja podatkov. V ta namen predlagamo metodo zgodnje integracije atributov. Metoda na skupnih atributih dveh množic nauči modele za nadzorovano učenje in z njimi napove manjkajoče atribute iz druge množice atributom iz prve množice. Implementirano metodo stestiramo na več množicah, ki vsebujejo podatke različnih modalnosti, tako da med seboj primerjamo večje število modelov, zgrajenih na osnovnih in zlitih množicah. Obravnavane implementacije metod značilno ne izboljšajo modelov. V nekaterih primerih pa je vseeno mogoče opaziti izboljšanje napovedi in tako potencial zlivanja podatkov za zvišanje klasifikacijske točnosti.

Language:Slovenian
Keywords:Alzheimerjeva bolezen, strojno učenje, zlivanje podatkov, napovedovanje, klasifikacija
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-99568 This link opens in a new window
Publication date in RUL:02.02.2018
Views:1870
Downloads:492
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting the Alzheimer’s disease using data fusion
Abstract:
Alzheimer's disease is an increasingly pressing problem in the modern world, as the world's population is aging. This insidious neurodegenerative disease causes dementia and affects the daily life of both -- the diseased and their caregivers. Diagnosing this disease is currently possible only after the death of the affected person. Researchers are striving to develop a method for predicting this disease using different types of data. In this master's thesis we are trying to improve prediction of Alzheimer's disease using data fusion. To this end, we propose an early attribute integration method. Our method takes common attributes of two sets and builds models to extend the attributes from original set with the missing attributes of the other set. We test the our implementation of the proposed method on multiple sets containing data of various modalities. We compare classification models built on the fused datasets and on the original datasets. Our implementation of the method does not significantly improve the models. However, in some cases, improvement is noticeable and can nevertheless indicate the potential of data fusion for increasing the classification accuracy.

Keywords:Alzheimer's disease, machine learning, data fusion, prediction, classification

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back