izpis_h1_title_alt

Tlakovanje ravnine s konveksnimi petkotniki : magistrsko delo
ID Hlade, Nik (Avtor), ID Cencelj, Matija (Mentor) Več o mentorju... Povezava se odpre v novem oknu

URLURL - Predstavitvena datoteka, za dostop obiščite http://pefprints.pef.uni-lj.si/4956/ Povezava se odpre v novem oknu

Izvleček
Nekatera tlakovanja s konveksnimi mnogokotniki so poznali že stari Grki, s problemi te veje geometrije pa se danes ukvarja vse več matematikov. V magistrskem delu se ves čas srečujemo z vprašanjem tlakovanja s konveksnimi mnogokotniki. Od teh so najbolj zanimivi ravno petkotniki, saj do leta 2017 ni bilo znano, ali poznamo vse konveksne petkotnike, ki tlakujejo ravnino. Konveksne petkotnike, ki tlakujejo ravnino, razdelimo v družine glede na vzorec tlakovanja. Za petkotnike določene družine pa veljajo posebni pogoji oz. lastnosti. Glede na te lastnosti različni petkotniki tvorijo različna tlakovanja. Prve družine je opisal že Reinhardt leta 1918, zadnjo družino pa so odkrili znanstveniki iz univerze v Washingtonu (Bothell) leta 2015. Vendar problema odkrivanja vseh petkotnikov, ki tlakujejo ravnino ne moremo rešiti le z naštevanjem primerov. Za razumevanje problema je potrebno opazovanje lastnosti tako tlakovanj kot tlakovcev. Popolnost seznama enakostraničnih petkotnikov, ki tlakujejo ravnino, sta leta 1985 dokazala M. D. Hirschhorn in D. C. Hunt. Do enakega zaključka je prišla tudi O. Bagina leta 2004. Dokaz popolnosti seznama petkotnikov, katerih tlakovanja imajo lastnost od roba do roba, sta neodvisno drug od drugega predstavila Sugimoto leta 2012 in Bagina leta 2011. V magistrskem delu je predstavljen vpogled v dokaze Hirschhorna in Hunta, Bagina in Sugimota, saj so prelomni v odkrivanju odgovora na vprašanje tlakovanja ravnine s konveksnimi petkotniki.

Jezik:Slovenski jezik
Ključne besede:konveksno tlakovanje, monoedrsko tlakovanje, tlakovanje od roba do roba, tlakovanje z mnogokotniki, tlakovanje s petkotniki
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:PEF - Pedagoška fakulteta
Založnik:[N. Hlade]
Leto izida:2017
Št. strani:72 str.
PID:20.500.12556/RUL-99502 Povezava se odpre v novem oknu
UDK:514(043.2)
COBISS.SI-ID:11905609 Povezava se odpre v novem oknu
Datum objave v RUL:31.01.2018
Število ogledov:1558
Število prenosov:299
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Tiling the plane by convex pentagons
Izvleček:
Some tessellations with convex polygons were already discovered by ancient Greeks, but nowadays more and more mathematicians are engaged in solving problems of this branch of geometry. The Thesis presents the problem of tiling with convex polygons. Pentagons are the most interesting of all polygons. Until the year of 2017 we didn't know, whether we know all convex pentagons that tile the plane. We divide convex pentagons that tile the plane into different types according to the pattern of tilings. Special conditions apply for convex pentagons of a certain type. Different tiles form different tilings depending on the properties of these pentagons. First types of convex pentagons were described by Reinhardt in 1918 and the last known type was discovered by Scientists of the University of Washington Bothell in 2015. Nevertheless, the problem of finding all convex pentagons that tile the plane cannot be solved only by listing the cases. In order to understand the problem, it is necessary to observe the properties of both tiles and tilings. In 1985, M. D. Hirschhorn and D. C. Hunt were able to prove the completeness of the list of equilateral pentagons that tile the plane. Russian mathematician O. Bagina came to the same conclusion in 2004. The proof of the completeness of the list of pentagons, whose tilings are edge to edge, was presented independently from Sugimoto in 2012 and Bagina in 2011. In the thesis we show insights into proofs of Hirschhorn and Hunt, Bagina and Sugimoto, as their discoveries are groundbreaking in finding the answer to the question of tiling of the plane with convex pentagons.

Ključne besede:geometry, geometrija

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj