izpis_h1_title_alt

Matematika v glasbi : magistrsko delo
ID Drnovšek, Mateja (Author), ID Cigler, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,22 MB)
MD5: EE5ADEB5464059E2FEF604DDCC5AA346
PID: 20.500.12556/rul/e876d497-c5fd-4826-abac-1975d5e7972d

Abstract
V magistrskem delu začnem z matematiko glasbe v preteklosti. Najprej predstavim harmonična razmerja, ki so jih poznali antični Grki. Nato opišem Fibonaccijeva števila, zaporedje in zlati rez ter s skladbo prikažem primer uporabe Fibonaccijevega zaporedja. Zlati rez je uporabil tudi Stradivarius pri izdelavi svojih violin. V nadaljevanju definiram transpozicije in inverzije, njihovo uporabo prikažem z Bachovo fugo. Nato matematiko povežem s plesom. Najprej z linijskim kontra plesom, katerega najboljši matematični model je diedrska grupa, nato pa še z ljudskimi plesi, ki jih lahko matematično opišemo s permutacijami, negibnimi točkami ter kompatibilnimi zaporedji. Nadaljujem z opisom diedrskih grup in višinskih razredov. Nato definiram delovanje grupe na množici ter durove in molove trozvoke. Sledi poglavje o PLR-transformacijah, v katerem podrobno opišem njihovo delovanje in primere uporabe na grafih, torusu in v Beethovnovi Deveti simfoniji. Nato pokažem, da sta grupi T/I in PLR dualni. Za zaključek navedem primere uporabe tonske mreže in PLR-transformacij.

Language:Slovenian
Keywords:matematika v glasbi, Fibonaccijevo zaporedje, transpozicije in inverzije, linijski kontra in ljudski ples, diedrska grupa, višinski razred, T/I-grupa, delovanje grup, durovi in molovi trozvoki, PLR-transformacije, PLR-grupa, Neo-Riemannova teorija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[M. Drnovšek]
Year:2017
Number of pages:VI, 51 f.
PID:20.500.12556/RUL-99059 This link opens in a new window
UDC:519.6
COBISS.SI-ID:18212697 This link opens in a new window
Publication date in RUL:23.12.2017
Views:3508
Downloads:1499
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mathematics in music
Abstract:
In my master thesis I start with the history of mathematics in music. First, I introduce the harmonic relationships that were already known by the Ancient Greeks. Then, I describe Fibonacci numbers, Fibonacci sequence and the golden ratio and then I present the use of Fibonacci sequence with a piece of music. The golden ratio was also used in violin construction by Stradivarius. After that, I define transpositions and inversions and present their usage with the Bach's fugue. Then, I connect mathematics with dancing. First, I mention the contra dancing for which the best mathematical model is the dihedral group, and later, I continue with folk dances which can be mathematically described by using permutations, fixed points and compatible sequences. Next, I continue with the description of dihedral groups and pitch classes. Then, I define the group acting on sets and major and minor triads. After that, I continue with PLR-transformations and precisely define their effects and usage in graphs, torus and in Ludwig Van Beethoven's Ninth Simphony. Then I prove that the groups T/I and PLR are dual. Finally, I name some examples of usage of tone-network and PLR-transformations.

Keywords:mathematics in music, Fibonacci sequence, transposition and inversion, contra dancing and folk dances, dihedral group, pitch class, T/I-group, group acting, major and minor triads, PLR-transformations, PLR-group, Neo-Riemannian theory

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back