izpis_h1_title_alt

MOČNOSTNI POD-NANOSEKUNDNI SVETLOBNI VIR
ID ŠAJN, MARKO (Avtor), ID Vidmar, Matjaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Petkovšek, Rok (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (6,50 MB)
MD5: 4D4513D4AF37FC8654DF6CECCE043FEC
PID: 20.500.12556/rul/e087654a-447d-4d58-887f-11a777cf7683

Izvleček
Namen doktorskega dela je bilo zasnovati, izdelati in analizirati močnostni podnanosekundni svetlobni vir, ki lahko generira močne optične impulze z dolžinami krajšimi od 100 ps na eni strani in take z dolžino do 2 ns na drugi strani območja. Njihove vršne moči pa so morale znašati med 500 mW in 1 W. Poleg tega je moral imeti svetlobni vir možnost programskega nastavljanja dolžine impulzov, njihove amplitude in ponavljalne frekvence v območju od 100 kHz do 50 MHz. Razvita naprava predstavlja bolj praktično in cenejšo rešitev vzbujevalnega vira za impulzne vlakenske laserske sisteme, ki so grajeni za aplikacije kjer se uporabljajo omenjene dolžine impulzov. Ozadje in motivacija za razvoj takega svetlobnega vira sta opisani v začetku uvodnega poglavja. Razložena je razlika med odstranjevanjem materiala s taljenjem (izparevanjem) in hladno ablacijo, kjer material odstranimo, ne da bi pri tem prišlo do termične deformacije obdelovanca. Izkaže se, da je to povezano s trajanjem in močjo optičnega impulza. Proces hladne ablacije je aplikativno zanimiv za izvajanje mikroobdelav na materialih, kjer se za ta namen uporabljajo vlakenski laserski sistemi tipa oscilator-ojačevalnik (angl. master oscillator power amplifier - MOPA). Gre za sistem, ki ima dva glavna gradnika, in sicer vzbujevalni svetlobni vir (oscilator) ter optični ojačevalnik. Kakšen je tipičen vlakenski ojačevalnik oziroma ojačevalna veriga pri teh sistemih ter opis tipičnih vzbujevalnih virov kot so rodovno vklenjen laser, mikročip laser in laserska dioda je predstavljeno v drugem delu uvodnega poglavja. Ker rodovno vklenjen laser in mikročip laser sama po sebi ne omogočata enostavnega nastavljanja dolžine impulza in ponavljalne frekvence, smo se odločili, da poskusimo to doseči z direktno modulacijo laserske diode. Da pa lahko iz odziva laserske diode, ki je posledica pojava preklopa ojačenja, izločimo začetno kratko oscilacijo in po potrebi generiramo tudi daljše impulze potrebujemo ustrezno impulzno električno krmiljenje. Zaradi zahtev, da potrebujemo električne impulze z amplitudo toka okrog 1 A in dolžino od 500 ps do 2 ns pri ponavljalnih frekvencah od 100 kHz do 50 MHz, so se kot edini primerni kandidati za pridobitev takih impulzov pokazali fotoprevodno polprevodniško stikalo, plazovni tranzistor, dioda s stopničastim prehodom v zaporno stanje (angl. step recovery diode - SRD) in tranzistor z visoko gibljivostjo elektronov (angl. high electron mobility transistor - HEMT) iz galijevega nitrida (GaN). Delovanje vsakega od omenjenih elementov in z njimi zgrajeni impulzni generatorji so predstavljeni v drugem poglavju, pri čemer je analiza fotoprevodnega polprevodniškega stikala narejena analitično, ostali tri elementi pa so bili preizkušeni empirično. Pri analizi plazovnega tranzistorja smo poleg osnovnega delovanja preverili še dve vezavi za povečevanje napetosti. To sta bili serijska in marxova vezava tranzistorjev. SRD diode smo v našem primeru uporabili za oblikovanje že generiranega daljšega impulza, kateremu smo izboljšali dvižni in upadni čas, obenem pa smo mu lahko s nastavljanjem prevodnih tokov skozi diodi spreminjali dolžino. GaN HEMT je bil uporabljen v ojačevalni verigi koncepta ojačevanja v osnovnem pasu, kjer smo zgradili verigo generatorja impulzov in njemu sledečih ojačevalnikov. Pri preizkusih se je pokazalo, da lahko vsem postavljenim pogojem za električne impulze zadostimo le z uporabo GaN HEMT tranzistorja. Ta je bil kot ključni element glavne ojačevalne stopnje uporabljen v konceptu ojačenja impulzov v osnovnem pasu. Del tega koncepta sta še dva segmenta in sicer je pred glavno stopnjo še predojačevalna stopnja, sestavljena iz dveh širokopasovnih (DC - 6 GHz) ojačevalnikov izvedenih v obliki monolitnih mikrovalovnih integriranih vezji (angl. monolithic microwave integrated circuit - MMIC) in generator šibkejših impulzov, katere pri tem konceptu ojačujemo. Generator je zgrajen iz komponent emitorsko sklopljene logike (angl. emitter coupled logic - ECL) in vsebuje tudi zakasnilno linijo za nastavljanje dolžin impulzov. Kako je omenjena ojačevalna veriga zgrajena in kakšen je njen odziv je opisano v tretjem poglavju. V našem primeru je svetlobni vir sestavljen iz dveh delov. Iz impulznega generatorja in laserske diode. Kakšne optične impulze bomo na koncu dobili je namreč odvisno od kombinacije obeh gradnikov. V četrtem poglavju je opisano kako smo z namenom iskanja najbolj optimalne kombinacije obeh, na našem impulznem krmilniku preizkusili tri hitre močne vzbujevalne laserske diode. Preizkušene so bile dve laserske diode s porazdeljeno povratno vezavo (angl. distributed feedback - DFB) in ena tipa Fabry-Perot (FP). Najprej smo preizkušali kako izločiti osnovno oscilacijo pojava preklopa ojačenja oziroma pridobiti najkrajši možni optični impulz z največjo močjo na način, da ima ta čim manj sekundarnih oscilacij ali repa, ki takemu impulzu običajno sledijo. Dalje smo preverili kakšni so optični odzivi, če laserske diode krmilimo z električnimi impulzi, ki jim spreminjamo dolžino do 2 ns. Končno smo izmerili tudi optične spektre izbranih laserskih diod in preverili, kako na stabilnost impulzov vpliva njihova temperatura. Na koncu smo svetlobni vir uporabili za vzbujanje vlakenske ojačevalne verige. Naloga vira je bila generacija osnovnega toka optičnih impulzov s ponavljalno frekvenco 40 MHz, dolžino 60 ps in vršno močjo 500 mW. Tok impulzov je bil v nadaljevanju razdeljen na vlake s po 20 impulzi s katerimi smo z nizkimi ponavljalnimi frekvencami med 1 kHz in 20 kHz vzbujali ojačevalno verigo. Zaradi velike povprečne moči impulzov iz vira smo poleg medstopenjskega filtriranja in impulznega črpanja zadnje ojačevalne stopnje v verigi, dosegli zmanjšanje ojačene spontane emisije in izboljšanje razmerja signal/šum glede na kontinuirano črpanje. Opis tega poskusa je narejen v petem poglavju.

Jezik:Slovenski jezik
Ključne besede:gk
Vrsta gradiva:Doktorsko delo/naloga
Organizacija:FE - Fakulteta za elektrotehniko
Leto izida:2017
PID:20.500.12556/RUL-99025 Povezava se odpre v novem oknu
COBISS.SI-ID:11925332 Povezava se odpre v novem oknu
Datum objave v RUL:21.12.2017
Število ogledov:2173
Število prenosov:444
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:SUBNANOSECOND POWER LIGHT SOURCE
Izvleček:
The purpose of this thesis was to design, implement and analyze power sub-nanosecond light source that is able to generate powerful optical pulses with lengths shorter than 100 ps on one side and lengths up to 2 ns on other side of the range. Their peak powers had to have values between 500 mW and 1 W and the light source also had to have option for programmable tuning of pulse duration, amplitude and repetition frequency in the range between 100 kHz and 50 MHz. Developed device presents more practical and economical solution of seed source for pulse fiber laser systems, that are build for applications where mentioned pulse lengths are used. The background and motivation for development of such light source are presented in the beginning of the introduction chapter. The difference between removal of material with melting (evaporation) and cold ablation, where material is removed without thermal deformation of a workpiece, is explained. It turns out, that this is correlated with duration and power of optical pulse. The cold ablation process is interesting for micromachining of materials, where master oscillator power amplifier (MOPA) type fiber lasers systems are used. Mentioned system consists from two main sections. They are, seed source (oscillator) and optical amplifier. What a typical fiber amplifier and chain of them is made of and description of typical seed sources like mode-locked laser, microchip laser and laser diode is presented in the second part of introduction chapter. Because mode locked laser and microchip laser, as they are, do not allow simple tuning of pulse duration and repetition frequency, we decided to try and achieve this with direct modulation of a laser diode. In order to extract very short starting oscillation from a diode's gain switch response and for generation of longer optical pulses, we need suitable electric driving. Since we need electrical pulses with current amplitude round 1 A and durations from 500 ps to 2 ns at repetition frequencies from 100 kHz to 50 MHz, only candidate devices like photoconductive semiconductor switch, avalanche transistor, step recovery diode (SRD) and gallium nitride (GaN) high electron mobility (HEMT) transistor have shown potential for achieving needed parameters of electrical pulses. How each of the selected devices work and also how pulse generators built with them perform, is explained in second chapter. The analysis of photoconductive semiconductor switch was made analytically, where other three elements were tested empirically. At analyzing avalanche transistor, besides basic working of the element, two circuits for voltage magnification were also tested. The circuits were serial connection of transistors and Marx type circuit. SRD diodes were in our case used for pulse shaping of a pre-generated longer pulse, to which we sharpened rise time, fall time and by controlling bias currents through diodes, we were also able to tune its duration. GaN HEMT transistor was used in amplification chain where baseband amplification was used for attaining powerful electrical pulses. Chain was consisted of pulse generator followed by amplifiers. As it turned out during the experiments, only with GaN HEMT transistor were we able to achieve all the parameters for electrical pulses. It was used as key element in main amplification stage in the baseband amplification concept. There are two more segments that are part of mentioned concept. Before main amplification stage there is preamplification stage consisting of two wideband (DC - 6 GHz) monolithic microwave integrated circuit (MMIC) type amplifiers and before this stage there is low power pulse generator. The latter is built from emitter coupled logic (ECL) components and also includes a delay line for tuning pulse duration. How this baseband amplification chain is assembled and what its response is, is presented in the third chapter. In our case the light source is assembled from two parts. One is electrical pulse generator and the second is laser diode. The properties of optical pulses from this source are dependent on combination of both parts. In the fourth chapter it is explained how we combined pulse generator with three different seed laser diodes in order to attain the best possible optical pulses. Two of tested laser diodes were distributed feedback (DFB) type and one was Fabry-Perot (FP) type laser diode. First we tested how to obtain the shortest and most powerful optical pulse via the extraction of the first oscillation of gain switch response. We were aiming to get this pulses with as less as possible secondary oscillations or tails that usually follow first oscillation. Second test was the optical response of diodes when they are driven with electrical pulses up to 2 ns. Finally we measured optical spectrums of selected laser diodes and also analyzed how their temperature influences on optical pulse stability. For final experiment we used light source for seeding fiber amplification chain. It generated pulses with duration of 60 ps, amplitude of 500 mW and repetition frequency of 40 MHz. These pulses were then divided into bursts containing 20 pulses at burst repetition frequencies from 1 kHz to 20 kHz. Because of the high average power of the pulses from source and with conjunction with between stage spectral filtering and pulse pumping of last amplifier stage, we were able to obtain reduction of amplified spontaneous emission and improvement in signal to noise ratio compared to continuous pumping. This experiment is explained in the fifth chapter.

Ključne besede:gk

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj