izpis_h1_title_alt

Voronoijevi diagrami
ID Kristan, Matej (Author), ID Mramor Kosta, Nežka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,52 MB)
MD5: 09462F11EBBB257A3084222FC9DD287F
PID: 20.500.12556/rul/02b26b71-9044-4323-be10-c14cc7f8cc90

Abstract
V diplomski nalogi najprej opišemo definicijo Voronoijevega diagrama in bolj podrobno lastnosti ravninskih Voronoijevih diagramov. Opišemo tudi triangulacijo ravnine, pojem Delaunayeve triangulacije in predstavimo povezavo med njima. Nato predstavimo tri različne algoritme za konstrukcijo ravninskih Voronoijevih diagramov in bolj podrobno pogledamo Fortunov algoritem, ki spada med algoritme s prebirno premico. Algoritmi s prebirno premico so posebej razširjeni v računski geometriji in z njimi rešujemo različne probleme v evklidskem prostoru. Za konstrukcijo Voronoijevega diagrama smo si izbrali Fortunov algoritem, ki smo ga implementirali v programskem jeziku Java. Pravilnost delovanja algoritma smo preverili na točkah, ki predstavljajo lokacije letališč v ZDA, lokacije javnih polnilnih mest za električne avtomobile v Sloveniji in na več naborih naključno generiranih točk.

Language:Slovenian
Keywords:Voronoijev diagram, dvodimenzionalen Voronoijev diagram, prebirna premica, računska geometrija, Fortunov algoritem, evklidski prostor
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-98576 This link opens in a new window
Publication date in RUL:07.12.2017
Views:2524
Downloads:539
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Voronoi diagrams
Abstract:
In the thesis we first describe the definition of a Voronoi diagram and several properties of Voronoi diagrams in the plane. We also define triangulations of the plane and the concept of a Delaunay triangulation, and present the connection between Voronoi diagrams and Delaunay triangulations. We then present three different algorithms for constructing a Voronoi diagram in the plane, and provide a more detailed description of Fortune’s algorithm which is an example of a sweep line algorithm. Sweep line algorithms are especially widespread in computational geometry and are used for solving various problems in Euclidean space. We selected Fortune’s algorithm for constructing Voronoi diagrams, and implemented it in the Java programming language. The performance of our implementation of the algorithm was checked on several randomly generated datasets and on a dataset of geographic coordinates of public charging stations for electric cars in Slovenia.

Keywords:Voronoi diagram, two-dimensional Voronoi diagram, sweep line, computational geometry, Fortune’s algorithm, Euclidean space

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back