Details

Napovedovanje naglasa slovenskih besed z metodami strojnega učenja
ID Krsnik, Luka (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window, ID Šef, Tomaž (Comentor)

.pdfPDF - Presentation file, Download (575,51 KB)
MD5: 6C5FD0638153655274551A33F0F24520
PID: 20.500.12556/rul/8ace05cb-e1bb-411e-ab81-c29a09d369da

Abstract
Za naglaševanje slovenskih besed ne obstaja preprost algoritem, naglasa slovenskih besed se namreč govorci naučimo med njihovim spoznavanjem. Metode strojnega učenja so se pri naglaševanju izkazale za uspešne. V magistrski nalogi smo na problemu preizkusili globoke nevronske mreže. Testirali smo različne arhitekture nevronskih mrež, več različnih predstavitev podatkov in ansamble mrež. Najboljše rezultate je vrnil ansambelski pristop, ki je pravilno napovedal 87,62 % besed iz testne množice. S predlaganim pristopom smo za več odstotkov izboljšal rezultate drugih metod strojnega učenja.

Language:Slovenian
Keywords:umetna inteligenca, strojno učenje, globoke nevronske mreže, procesiranje naravnega jezika, naglaševanje
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-98276 This link opens in a new window
Publication date in RUL:23.11.2017
Views:4349
Downloads:882
Metadata:XML DC-XML DC-RDF
:
KRSNIK, Luka, 2017, Napovedovanje naglasa slovenskih besed z metodami strojnega učenja [online]. Master’s thesis. [Accessed 18 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=98276
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Prediction of stress of Slovenian words with machine learning methods
Abstract:
There is no simple algorithm for stress assignment of Slovene words. Speakers of Slovene are usually taught accents together with words. Machine learning algorithms give positive results on this problem, therefore we tried deep neural networks. We tested different architectures, data presentations and an ensemble of networks. We achieved the best results using the ensemble method, which correctly predicted 87,62 % of tested words. Our neural network approach improved results of other machine learning methods and proved to be successful in stress assignment.

Keywords:artificial inteligence, data mining, machine learning, deep neural networks, natural language processing, accentuation

Similar documents

Similar works from RUL:
  1. Participacija v gozdarskem načrtovanju
  2. Nature-based forestry in Central Europe
  3. Produkcijska sposobnost gozdnih rastišč v Sloveniji
  4. Razvojni dan gozdno-lesnega sektorja
  5. Konferenca Uredba o zelenih javnih naročilih, priložnost in izziv za lesarje in gradbince
Similar works from other Slovenian collections:
  1. Literary education in kindergarten: what should kindergarten children be taught about literature?
  2. Književna vzgoja v vrtcu z bralnim nahrbtnikom
  3. Pripovedovati ali brati pravljico v vrtcu?
  4. Razvijanje zgodnje pismenosti in književna vzgoja v vrtcu
  5. Katere otroke s posebnimi potrebami identificiramo v otroškem vrtcu

Back