Details

Primerjava uspešnosti metod poslovne inteligence ter metod tehnične analize za napovedovanje gibanja cen vrednostnih papirjev
ID RIZMAN, KLEMEN (Author), ID Hovelja, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (540,18 KB)
MD5: A27D91E1D86FF865ECD2166600A208FB
PID: 20.500.12556/rul/1a0cf950-7e44-4612-a3e6-2d738cdb7a41

Abstract
Diplomska naloga obravnava področje poslovne inteligence (BI). Poslovna inteligenca se ukvarja z orodji in algoritmi, ki se izvajajo nad neobdelanimi podatki, ki jih skušajo spremeniti v uporabne informacije za poslovne analize in napovedi. Tehnologija, ki jo uporabljajo v poslovni inteligenci, je največkrat namenjena obdelavi ogromne količine neurejenih podatkov (big data) ter smiselni in čim bolj enostavni obrazložitvi pridobljenih rezultatov. V svoji nalogi sem uporabil polinomsko regresijo, ki se uporablja v poslovni inteligenci, in jo prilagodil za napovedovanje gibanje cen vrednostnih papirjev. Dobljene rezultate sem primerjal z metodami, ki jih uporabljajo v finančni industriji za napovedovanje cen vrednostnih papirjev.

Language:Slovenian
Keywords:poslovna inteligenca, polinomska regresija, tehnična analiza
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-97775 This link opens in a new window
Publication date in RUL:09.11.2017
Views:1956
Downloads:776
Metadata:XML DC-XML DC-RDF
:
RIZMAN, KLEMEN, 2017, Primerjava uspešnosti metod poslovne inteligence ter metod tehnične analize za napovedovanje gibanja cen vrednostnih papirjev [online]. Bachelor’s thesis. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=97775
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Success comparison between business inteligence methods and technical analysis methods for stock price forecasting
Abstract:
The graduation thesis deals with the area of business intelligence (BI). Business intelligence deals with tools and algorithms, which are used on raw data in order to change them into useful information for business analyses and forecasts. Technology used in business intelligence is mostly used for big data processing. The results we get from these methods need to be processed logically and as simply as possible. In my thesis, I used polynomial regression, which is used in business intelligence. I modified it for forecasting of stock’s price movement. I compared the obtained result to different methods used in financial industry for forecasting stock’s price movements.

Keywords:business intelligence, polynomial regression, technical analysis

Similar documents

Similar works from RUL:
  1. Discrete-time stochastic control
  2. Backward stochastic differential equations
  3. Reinforcement-learning-based route generation for heavy-traffic autonomous mobile robot systems
  4. Stohastična ureditev nenegativnih slučajnih spremenljivk
  5. Monte Carlo tree search strategies
Similar works from other Slovenian collections:
  1. A web application for stochastic algorithms testing
  2. NONNEGATIVE MATRICES
  3. Fortune strategy
  4. Bonsma, Paul; Paulusma, Daniël: Using contracted solution graphs for solving reconfiguration problems. (English summary) Acta Inform. 56 (2019), no. 7-8, 619-648.
  5. Optimal strategy at the roulette

Back