izpis_h1_title_alt

Palično število in njegova uporaba : diplomsko delo
ID Šega, Urša (Author), ID Repovš, Dušan (Mentor) More about this mentor... This link opens in a new window, ID Cencelj, Matija (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/4780/ This link opens in a new window

Abstract
V diplomskem delu obravnavamo vozelno invarianto, ki jo imenujemo palično število. Izkaže se za uporabno, ko želimo ugotoviti, ali gre za dva ekvivalentna vozla. Pred vpeljavo pojma paličnega števila ponovimo osnovne definicije teorije vozlov, ki so potrebne za razumevanje diplomskega dela. Nato vpeljemo pojem paličnega števila in njegovih lastnosti pri različnih družinah vozlov in ga, za lažje razumevanje, ilustriramo na nekaj primerih. Navedemo nekaj izrekov, ki nam pomagajo pri določanju paličnega števila in jih prav tako predstavimo na primerih. V zadnjem poglavju pa predstavimo vozelno invarianto, imenovano križiščno število, ki nam pomaga pri določanju paličnega števila.

Language:Slovenian
Keywords:vozelna invarianta, križiščno število
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publisher:[U. Šega]
Year:2017
Number of pages:28 str.
PID:20.500.12556/RUL-96383 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:11743561 This link opens in a new window
Publication date in RUL:02.10.2017
Views:1602
Downloads:367
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stick number and its use
Abstract:
In diploma thesis we will describe concept of a knot invariant known as the stick number. This concept proves to be useful when we want to determine if two knots are equivalent. A review of main definitions from knot theory will be made before introducing a concept of the stick number, which is essential for understanding the thesis. Furthermore, a concept of the stick number and its features for different knot classes will be introduced and also, for better understanding, illustrated by few examples. Some theorems will be given and demonstrated by examples, which can come in handy at finding the stick number. Last chapter presents a knot invariant known as the crossing number, which is useful for determining the stick number.

Keywords:mathematics, matematike

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back