Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Globoki modeli avtorstva umetniških slik
ID
Ilenič, Nejc
(
Author
),
ID
Zupan, Blaž
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(23,24 MB)
MD5: 7A17C9C26C514058E50B582CDCEC6373
PID:
20.500.12556/rul/9f962347-f689-4d42-ab01-f738c4b899d9
Image galllery
Abstract
Vse več raziskav se osredotoča na problem avtomatskega prepoznavanja slikarjev iz digitaliziranih umetniških slik. V tem delu se omenjenega izziva lotimo na nadzorovan način, z uporabo konvolucijske nevronske mreže, ki je zaradi visoke izrazne moči sposobna napovedovanja velikega števila avtorjev iz nizkoresolucijskih slik. Predlagano rešitev ovrednotimo na tekmovanju spletnega portala Kaggle, kjer je za pare digitalnih umetnin potrebno napovedati, ali sta delo istega slikarja. V nalogi pokažemo, da značilke, izpeljane iz tem in motivov slik, podobno kot nižjenivojske značilke vsebujejo inherentne lastnosti, ki so primerne za razlikovanje med avtorji.
Language:
English
Keywords:
strojno učenje
,
globoki modeli
,
konvolucijske nevronske mreže
,
umetniške slike
Work type:
Master's thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-96248
Publication date in RUL:
27.09.2017
Views:
2293
Downloads:
656
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ILENIČ, Nejc, 2017,
Globoki modeli avtorstva umetniških slik
[online]. Master’s thesis. [Accessed 17 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=96248
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Deep models of painting authorship
Abstract:
An increasing number of studies are investigating how to automatically recognize painters from digital artwork images. We approach this problem in a supervised manner, by training a high-capacity convolutional neural network, capable of predicting a large number of artists from low-resolution scans. We evaluate the proposed solution in a Kaggle competition, in which pairs of paintings need to be classified based on the identity of their authors. The main contribution of our work is the provision of empirical evidence that themes and motifs, similar to low-level features, contain discriminative potential for identifying painters.
Keywords:
machine learning
,
deep models
,
convolutional neural networks
,
artwork images
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back