izpis_h1_title_alt

Razvoj priporočilnega sistema za personalizacijo ponudbe trgovine s tekstilnimi izdelki
ID Gostiša, Karmen (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,05 MB)
MD5: DABE391518873883C62E860DBAD86FF0
PID: 20.500.12556/rul/a2521be8-196e-499f-b344-5abe479c488e

Abstract
V diplomskem delu se posvetimo problemu razvoja priporočilnega sistema za trgovino s tekstilnimi artikli na podlagi podatkov o nakupih. V prvem delu pregledamo teoretično ozadje priporočilnih sistemov in povezovalnih pravil. V nadaljevanju opišemo podatke in kvantitativno ter kvalitativno predstavimo njihove osnovne značilnosti. Podrobneje opišemo metode, s katerimi smo se lotili razvoja priporočilnega sistema in sicer, metodi najbližjih sosedov ter matrični razcep. Rezultate metod primerjamo z naivno metodo priporočanja najbolj priljubljenih artiklov in pri vseh dosežemo bistveno boljše rezultate. Najbolje se je izkazal matrični razcep, ki bi ga lahko uporabili v produkcijski aplikaciji.

Language:Slovenian
Keywords:priporočilni sistem, priporočanje na podlagi vsebine, priporočanje na podlagi sodelovanja, strojno učenje, matrični razcep, povezovalna pravila
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-95917 This link opens in a new window
Publication date in RUL:25.09.2017
Views:2466
Downloads:510
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recommender system for personalized assortment in a clothing store
Abstract:
In the diploma thesis we are dealing with the problem of developing a recommender system for a clothing store based on transaction data. We start with theoretical basics about recommenders and association rules. Afterwards we describe data and represent its quantitative and qualitative aspects. We continue with the detailed explanation of implemented methods, namely, nearest neighbors and matrix factorization. In the end we compare the results of our methods with naive method of recommending most popular products, achieving much better results. Matrix factorization produced the best results and we would use it in production.

Keywords:recommender system, content-based filtering, collaborative filtering, machine learning, matrix factorization, association rules

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back