Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Razvoj priporočilnega sistema za personalizacijo ponudbe trgovine s tekstilnimi izdelki
ID
Gostiša, Karmen
(
Author
),
ID
Kukar, Matjaž
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,05 MB)
MD5: DABE391518873883C62E860DBAD86FF0
PID:
20.500.12556/rul/a2521be8-196e-499f-b344-5abe479c488e
Image galllery
Abstract
V diplomskem delu se posvetimo problemu razvoja priporočilnega sistema za trgovino s tekstilnimi artikli na podlagi podatkov o nakupih. V prvem delu pregledamo teoretično ozadje priporočilnih sistemov in povezovalnih pravil. V nadaljevanju opišemo podatke in kvantitativno ter kvalitativno predstavimo njihove osnovne značilnosti. Podrobneje opišemo metode, s katerimi smo se lotili razvoja priporočilnega sistema in sicer, metodi najbližjih sosedov ter matrični razcep. Rezultate metod primerjamo z naivno metodo priporočanja najbolj priljubljenih artiklov in pri vseh dosežemo bistveno boljše rezultate. Najbolje se je izkazal matrični razcep, ki bi ga lahko uporabili v produkcijski aplikaciji.
Language:
Slovenian
Keywords:
priporočilni sistem
,
priporočanje na podlagi vsebine
,
priporočanje na podlagi sodelovanja
,
strojno učenje
,
matrični razcep
,
povezovalna pravila
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-95917
Publication date in RUL:
25.09.2017
Views:
2631
Downloads:
527
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GOSTIŠA, Karmen, 2017,
Razvoj priporočilnega sistema za personalizacijo ponudbe trgovine s tekstilnimi izdelki
[online]. Bachelor’s thesis. [Accessed 5 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=95917
Copy citation
Share:
Secondary language
Language:
English
Title:
Recommender system for personalized assortment in a clothing store
Abstract:
In the diploma thesis we are dealing with the problem of developing a recommender system for a clothing store based on transaction data. We start with theoretical basics about recommenders and association rules. Afterwards we describe data and represent its quantitative and qualitative aspects. We continue with the detailed explanation of implemented methods, namely, nearest neighbors and matrix factorization. In the end we compare the results of our methods with naive method of recommending most popular products, achieving much better results. Matrix factorization produced the best results and we would use it in production.
Keywords:
recommender system
,
content-based filtering
,
collaborative filtering
,
machine learning
,
matrix factorization
,
association rules
Similar documents
Similar works from RUL:
Analysis of European legislation and test methods for evaluation of endocrine disrupting chemicals
Responses of aquatic test organisms to the presence of endocrine disruptors
Synthesis of bisphenol S sulfate and evaluation of the kinetics of bisphenol S sulfation in vitro
ǂThe ǂimpact of lifestyle on immune system
Surface plasmon resonance enabled activity of Au+TiO(sub)2 catalysts in photocatalytic oxidation of organic pollutants under visible light
Similar works from other Slovenian collections:
Impact of leaching on chloride ingress profiles in concrete
Hybrid approach for wood modification
Back