Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Catalanova števila : magistrsko delo
ID
Kozarski, Lara
(
Author
),
ID
Konvalinka, Matjaž
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,21 MB)
MD5: 8296B9758EC7EFEB950E78E87DA2BD3C
PID:
20.500.12556/rul/531398f8-e045-42fc-9d79-7394030bf6d9
Image galllery
Abstract
V delu predstavimo nekatere kombinatorične probleme, ki ustrezajo zaporedju Catalanovih števil, ter zapišemo bijekcije med njimi. Podamo eksplicitno formulo in rekurzivno zvezo za izračun splošnega člena v tem zaporedju in ju dokažemo na več načinov. Izpeljemo rodovno funkcijo zaporedja ter si ogledamo asimptotiko Catalanovih števil. Definiramo $k$-Catalanova števila kot eno izmed posplošitev in opišemo kombinatorične probleme, ki jim ustrezajo. Dokažemo tudi posplošeno formulo, ki ustreza $k$-Catalanovim številom, in na kratko omenimo še nekaj zgodovinskih animivosti.
Language:
Slovenian
Keywords:
Catalanova števila
,
preštevalna kombinatorika
,
bijekcije
,
Dyckove poti
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Place of publishing:
Ljubljana
Publisher:
[L. Kozarski]
Year:
2014
Number of pages:
66 str.
PID:
20.500.12556/RUL-95870
UDC:
519.1
COBISS.SI-ID:
17207641
Publication date in RUL:
22.09.2017
Views:
1590
Downloads:
522
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Abstract:
The aim of this thesis is to present some examples of combinatorial problems that correspond to the sequence of Catalan numbers and write down bijections between them. We give an explicit formula and a recurrence relation for computation of the general term of this sequence and find different proofs that they hold. We derive the formula for the generating function of the sequence and take a look at asymptotic behavior of Catalan numbers. We define $k$-Catalan numbers as an example of a generalization and describe the corresponding combinatorial problems. We also prove the generalized formula that corresponds to $k$-Catalan numbers and briefly mention a few interesting historical facts.
Keywords:
Catalan numbers
,
enumerative combinatorics
,
bijections
,
Dyck paths
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back