To delo je poskus vzpostavitve krepkejše povezave med matematiko in kemijo. Polega tega poskušamo diskretne strukture, kot so npr. zemljevidi, uveljaviti v matematični kemiji. Najprej predstavimo Hücklovo teorijo molekulskih orbital, posebno pozornost pa namenimo konceptu proste valence. V literaturi je pogosto predpostavljeno, da je največje ▫$\pi$▫ vezno število (tj. skupna vsota redov ▫$\pi$▫ vezi, ki izhajajo iz nekega ▫$sp^2$▫ ogljikovega atoma), ki ga je mogoče teoretično doseči (pri poljubnem atomu v poljubnem ▫$sp^2$▫ ▫$\pi$▫ sistemu), največ ▫$\sqrt{3}$▫. Vendar vse kaže, da ni bila ta domneva nikoli formalno dokazana. V tem delu smo uspeli dobiti nekatere delne rezultate. Poleg tega postrežemo z izračuni obnašanja ▫$\pi$▫ veznega števila kot funkcije števila atomov ▫$n$▫ v družini kemijskih grafov in opišemo družino grafov, ki dosežejo lokalne maksimume za manjše vrednosti parametra ▫$n$▫. Leta 2013 je skupina znanstvenikov pod vodstvom Romana Jerale uspešno izdelala samosestavljiv polipeptid, ki se je zložil v tetraeder. Najprej podamo matematični model, ki je primeren za opis samosestavljanja. Nato predstavimo algoritem, ki s pomočjo dinamičnega programiranja našteje krepke obhode, tj. dvojne obhode, ki imajo še neke dodatne lastnosti. Leta 2012 so Cruz in sodelavci uvedli zanimivo družino konveksnih benzenoidov. V tem delu predstavimo več ekvivalentnih definicij konveksnih benzenoidov in nekatere njihove lastnosti. V enciklopediji OEIS zaporedje z oznako A116513, ki ga je definiral A. C. Wechsler, predstavlja njihovo enumeracijo. S. Reynolds je preštel in poiskal vse primerke, ki imajo največ 250 šestkotnikov. Naša študija neodvisno potrdi pravilnost njihove enumeracije. Konveksne benzenoide razdelimo v tako imenovane fundamentalne družine, generiranje pa opravimo v vsaki družini posebej. S takšnim pristopom z lahkoto preštejemo vse konveksne benzenoide, ki imajo do ▫$10^6$▫ šestkotnikov. V tem delu se posvetimo tudi koronoidom, še posebej večkratnim koronoidom. Predstavimo matematično formalizacijo teorije koronoidnih ogljikovodikov, ki temelji zgolj na sosednosti med šestkotniki neskončne šestkotniške mreže v ravnini. Nekaj pozornosti namenimo še naluknjanim obližem, ki posplošijo koronoide. Poleg šestkotniških smejo imeti tudi lica drugačnih dolžin. Tako kot lahko koronoide obravnavamo kot benzenoide z luknjami, lahko tudi naluknjane obliže obravnavamo kot obliže z luknjami. Na enih in na drugih lahko naredimo posplošeno operacijo altan, ki poteka na več luknjah hkrati. Izpeljemo formulo, ki prešteje Kekulejeve strukture posplošenega altana, če je število Kekulejevih struktur originalnega grafa že znano. Tudi Paulingov red vezi lahko enostavno izračunamo za altan, če že od prej poznamo njihove vrednosti v osnovnem grafu.
|