V disertaciji predstavimo nekaj rezultatov, ki ležijo na preseku med teorijo grafov in linearno algebro. Predstavimo področje algebraične teorije grafov in vpeljemo nekaj znanih rezultatov iz tega področja. Natančneje, pokažemo, kako nam lastnosti grafovskih polinomov in matrik določajo strukturne lastnosti ustreznih grafov. Konkretneje se osredotočimo na matriko sosednosti, razdaljno matriko in kromatični polinom. V kontekstu kromatičnega polinoma konstruiramo neskončno družino protiprimerov za domnevo J. Xu-ja in Z. Liu-ja. V nadaljevanju disertacije se osredotočimo na pojem krepko regularnih grafov in razvijemo nekaj njihovih osnovnih lastnosti. Med drugim pokažemo tudi ekstremalno povezavo med številom konveksnih ciklov ter poddružino krepko regularnih grafov - Moorovih grafov. Konec posvetimo problemu klasifikacije krepko regularnih grafov. S pomočjo metode zvezdnega komplementa klasificiramo krepko regularne grafe.
|