izpis_h1_title_alt

Razvoj skupin v omrežjih : doktorska disertacija
ID Praprotnik, Selena (Author), ID Batagelj, Vladimir (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (931,99 KB)
MD5: DCA9B9963098780DC19EBDA411E98C60
PID: 20.500.12556/rul/484030bd-5318-4404-b46e-a853ff085735

Abstract
V disertaciji vpeljemo nov algebraičen pristop k analizi časovnih omrežij, ki temelji na časovnih količinah nad ustreznim polkolobarjem. Definiramo polkolobarje za analizo časovnih omrežij brez potovalnega in čakalnega časa in polkolobarje za analizo časovnih omrežij, ko potovalni in čakalni časi niso ničelni. Za omrežja brez potovalnih in čakalnih časov razvijemo algoritme za učinkovito računanje s časovnimi količinami in za izbrane mere pomembnosti, ki so posplošitve mer za analizo statičnih omrežij. Opišemo izračun stopnje vozlišč, nakopičenosti, dostopnosti in vmesnosti ter rekurzivnih mer pomembnosti. Razdelamo postopke za izračun mere pomembnosti glede na lastne vektorje sosednostne matrike omrežja, Katzove pomembnosti in Bonacichevih pomembnosti ▫$\alpha$▫ in ▫$(\alpha,\beta)$▫. Opišemo tudi postopka HITS (kazala in viri) in pageRank. Definiramo dejavnost in privlačnost vozlišč. Mere pomembnosti nam omogočajo identifikacijo skupine najpomembnejših vozlišč omrežja in z njihovim pregledom / primerjavo vpogled v spreminjanje njihove vloge skozi čas. Povemo, kako izračunamo ovojnico nad absorpcijskimi polkolobarji in z njeno uporabo časovno dosegljivost. S pomočjo dosegljivosti izračunamo časovno razbitje na šibke in krepke komponente. Opisani pristop lahko uporabimo za analizo skupin, ki so določene s poljubno drugo časovno ekvivalenčno relacijo na danem omrežju. Opisani postopki so dostopni kot Pythonska knjižnica TQ. Algoritme preizkusimo na realnih omrežjih, Franzosijevem omrežju nasilja v Italiji in omrežju Reutersovih novic o terorističnem napadu 11. septembra.

Language:Slovenian
Keywords:časovne količine, časovno omrežje, potovalni čas, polkolobar, mere pomembnosti, skupina, dosegljivost, povezanosti, algoritem, Pythonska knjižnica, nasilje
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[S. Praprotnik]
Year:2015
Number of pages:XVIII, 111 str.
PID:20.500.12556/RUL-95858 This link opens in a new window
UDC:519.17:004(043.3)
COBISS.SI-ID:17296217 This link opens in a new window
Publication date in RUL:24.10.2017
Views:1172
Downloads:686
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Abstract:
In the thesis we describe a new algebraic approach to the temporal network analysis based on the notion of temporal quantities. We define semirings for the analysis of temporal networks with zero latency and zero waiting time and semirings for the analysis of temporal networks where the latency is given. For temporal networks with zero latency and zero waiting time we present algorithms for the efficient operations with temporal quantities and for the computation of chosen centrality measures that are generalized cases of centrality measures for static networks. We describe the computation of degree, clustering coefficients, closeness, betweenness and recursive measures of centrality. We explain the eigenvector centrality, the Katz centrality measure, the Bonacich ▫$\alpha$▫ and ▫$(\alpha,\beta)$▫ centralities, the HITS (hubs and authorities) centrality, and the pageRank centrality. We define activity and attraction coefficients in temporal networks. Centrality measures allow us to identify groups of important vertices. With a review / comparison of the vertices from the groups we get an insight into their roles through time. We present the algorithm for computing the closure of a temporal network over an absorptive semiring and for computing the temporal reachability of nodes. We also describe the procedure for computing temporal weak and strong connectivity components using the appropriate closure. This approach can also be used for the analysis of groups that are determined by other equivalence relations on the given network. The described procedures are available as a Python library TQ. We tested the algorithms on real networks, the Franzosi's violence network and the Reuters terror news network.

Keywords:temporal quantity, temporal network, latency, semiring, centrality measure, group, reachability, connectivity, algorithm, Python library, violence

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back