Loading [MathJax]/jax/output/HTML-CSS/jax.js

Details

Holomorfni spreji v kompleksni analizi in geometriji : doktorska disertacija
ID Stopar, Kris (Author), ID Prezelj, Jasna (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (446,98 KB)
MD5: A7AD0476C438114083055A3D63F9AE1C
PID: 20.500.12556/rul/ba67f15e-404f-45f4-bd8f-826064930fbf

Abstract
Naj bo π:ZX holomorfna submerzija iz kompleksne mnogoterosti Z na kompleksno mnogoterost X in DX 1-konveksna domena s strogo psevdokonveksnim robom. V disertaciji dokažemo, da pod določenimi predpostavkami vedno obstaja sprej π-prerezov nad ˉD, ki ima predpisano jedro, fiksira izjemno množico E domene D in je dominanten na ˉDE. Vsak prerez v tem spreju je razreda Ck(ˉD) in holomorfen na D. Kot posledico dobimo več aproksimacijskih rezultatov za π-prereze. Med drugim dokažemo, da lahko π-prereze, ki so razreda Ck(ˉD) in holomorfni na D aproksimiramo v Ck(ˉD) topologiji s π-prerezi, ki so holomorfni v odprtih okolicah množice ˉD. Pod dodatnimi predpostavkami na submerzijo dobimo tudi aproksimacijo z globalnimi holomorfnimi π-prerezi in princip Oka nad 1-konveksnimi mnogoterostmi. Vključimo tudi rezultat o obstoju pravih holomorfnih preslikav iz 1-konveksnih domen v q-konveksne mnogoterosti.

Language:Slovenian
Keywords:1-konveksna domena, 1-konveksen Cartanov par, Cartanova lema, sprej, sprej prerezov, aproksimacija, princip Oka, prava holomorfna preslikava
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FMF - Faculty of Mathematics and Physics
Place of publishing:Ljubljana
Publisher:[K. Stopar]
Year:2013
Number of pages:72 str.
PID:20.500.12556/RUL-95850 This link opens in a new window
UDC:517.55(043.3)
COBISS.SI-ID:16765529 This link opens in a new window
Publication date in RUL:24.10.2017
Views:1498
Downloads:268
Metadata:XML DC-XML DC-RDF
:
STOPAR, Kris, 2013, Holomorfni spreji v kompleksni analizi in geometriji : doktorska disertacija [online]. Doctoral dissertation. Ljubljana : K. Stopar. [Accessed 14 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=95850
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Abstract:
Let π:ZX be a holomorphic submersion of a complex manifold Z onto a complex manifold X and DX a 1-convex domain with strongly pseudoconvex boundary. We prove that under certain conditions there always exists a spray of π-sections over ˉD which has prescribed core, fixes the exceptional set E of D, and is dominating on ˉDE. Each section in this spray is of class Ck(ˉD) and holomorphic on D. As a consequence we obtain several approximation results for π-sections. In particular, we prove that π-sections which are of class Ck(ˉD) and holomorphic on D can be approximated in the Ck(ˉD) topology by π-sections that are holomorphic in open neighborhoods of ˉD. Under additional assumptions on the submersion we also get approximation by global holomorphic π-sections and the Oka principle over 1-convex manifolds. We include a result on the existance of proper holomorphic maps from 1-convex domains into q-convex manifolds.

Keywords:1-convex domain, 1-convex Cartan pair, Cartan lemma, spray, spray of sections, approximation, Oka principle, proper holomorphic map

Similar documents

Similar works from RUL:
  1. Skupne občinske uprave
  2. Postopek ustanovitve nove občine - občina Kostanjevica na Krki
  3. Odcepitev in nastanek nove občine
  4. Aktualna vprašanja slovenske lokalne samouprave
  5. Finančna (ne)odvisnost občine
Similar works from other Slovenian collections:
  1. Pravni vidiki financiranja občin in pokrajin
  2. Pravna podlaga ureditve lokalne samouprave v italijanski občini Gorica

Back