Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Odkrivanje vzorcev v večglasni glasbi z nenadzorovanim učenjem
ID
Žerovnik, Manca
(
Author
),
ID
Marolt, Matija
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,25 MB)
MD5: 310FDFE79FEB93B5BFAC93A9B088CFE8
PID:
20.500.12556/rul/8abc653e-cb2d-417b-94f1-c6c9687ecfa3
Image galllery
Abstract
V delu predstavimo nadgradnjo kompozicionalnega hierarhičnega modela za odkrivanje ponavljajočih vzorcev v večglasni glasbi v simbolični obliki. Kompozicionalni hierarhični model je globoka arhitektura zgrajena iz več nivojev, ki vzorce išče na podlagi nenadzorovanega učenja. Algoritem preizkusimo na javno dostopnih zbirkah in ga primerjamo z ostalimi algoritmi na tem področju. Predstavimo upodobitev rezultatov modela v obliki spletne aplikacije. Na podlagi najdenih ponavljajočih vzorcev naredimo klasifikacijo slovenskih ljudskih pesmi glede na variantni tip.
Language:
Slovenian
Keywords:
pridobivanje informacij iz glasbe
,
kompozicionalni hierarhični model
,
odkrivanje ponavljajočih vzorcev
Work type:
Master's thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2017
PID:
20.500.12556/RUL-95568
Publication date in RUL:
20.09.2017
Views:
1344
Downloads:
329
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Discovery of Repeated Patterns in polyphonic music with unsupervised learning
Abstract:
In this work we introduce an upgrade of compositional hierarchical model for repated pattern discovery in polyphonic symbolic music. Compositional hierarchical model is a deep architecture with multi layer structure. Pattern discovery is made in an unsupervised manner. We test algorithm on public datasets and compare it with other approaches. We present a visualization of results in form of web application. Finally we make a classification of slovenian folk songs based on discovered repeated patterns.
Keywords:
music information retrieval
,
compositional hierarchical model
,
discovery of repeated patterns
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back