izpis_h1_title_alt

Detekcija prometnih znakov s konvolucijskimi nevronskimi mrežami
ID Kovačič, Andreja (Author), ID Skočaj, Danijel (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,80 MB)
MD5: EE4F177A6A5442AF8225A6C5C1B74595
PID: 20.500.12556/rul/a15712d7-423b-4838-ad54-1dc02fa5c006

Abstract
Diplomsko delo se ukvarja z detekcijo in prepoznavanjem prometnih znakov z metodo Faster R-CNN. Razišče možnost uporabe generiranih podatkov za validacijo učenja, kot odgovor na omejeno velikost učne množice. Ker Faster R-CNN zaradi načina učenja ne dopušča običajnega učenja na težkih primerih (ang. bootstrapping), uporabimo novo metodo - sprotno iskanje težkih primerov. Na koncu iščemo optimalen način doučenja že obstoječega modela.

Language:Slovenian
Keywords:Faster R-CNN, klasifikacija, detekcija, sprotno iskanje težkih primerov, doučenje, prometni znaki
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-95566 This link opens in a new window
Publication date in RUL:20.09.2017
Views:2263
Downloads:574
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Traffic sign detection with convolutional neural networks
Abstract:
The goal of this thesis is to describe and use method Faster R-CNN for detection and recognition of traffic signs. It explores the possibility of using artificially generated images in validation set, in hopes of saving real images for train set. We tackle a real world problem of growing dataset through time. We'll try to find an optimal way to augment the already learned model with new images. Lastly, we try to apply a new method, online hard example mining, which is essentially bootstrapping for end-to-end systems.

Keywords:Faster R-CNN, classification, detection, online hard example mining, fine-tuning, traffic signs

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back