izpis_h1_title_alt

Shranjevanje proizvodnih podatkov za učinkovito analizo
ID GAZVODA, ŽIGA (Author), ID Butala, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,25 MB)
MD5: AC64359148A1D7058D4BAF631F23FFB2
PID: 20.500.12556/rul/9242044c-42cf-41c8-8796-c9e5fa2f4131

Abstract
Proizvodna industrija se spopada z globalizacijo. Izdelke mora izdelovati bolje in hitreje, obenem pa zmanjševati stroške proizvodnje. Učinkovitost proizvodnje se lahko izboljša z analizo razpoložljivih proizvodnih podatkov. Ta zaključna naloga se osredotoča na analizo podatkov pri procesu injekcijskega brizganja plastike. V njej je realiziran in predstavljen program, ki podatke iz krmilnika in sistema za upravljanje proizvodnje smiselno uredi v programu na osnovi Python programskega jezika in jih shrani v podatkovno bazo MongoDB. Rezultat naloge so podatki, shranjeni v podatkovni bazi, s katerimi je nadaljnja interakcija hitra in preprosta.

Language:Slovenian
Keywords:velepodatki, podatkovna baza, mongoDB, parametri, analiza
Work type:Bachelor thesis/paper
Organization:FS - Faculty of Mechanical Engineering
Year:2017
PID:20.500.12556/RUL-95524 This link opens in a new window
Publication date in RUL:20.09.2017
Views:1583
Downloads:312
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Storing manufacturing data for efficient analysis
Abstract:
The manufacturing industry faces globalization. It needs to produce products better and faster, while reducing production costs. The efficiency of production can be improved by analyzing the available production data. This final task focuses on data analysis in the process of injection plastic moulding. In it, a program is executed and presented, which makes the data from the controller and manufacturing execution system meaningful in the program based on the Python programming language and stores them in the MongoDB database. The result of the task is the data stored in the database, with which the further interaction is quick and easy.

Keywords:Big Data, database, MongoDB, parametres, analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back