izpis_h1_title_alt

Bralno razumevanje različnih načinov zapisovanja geometrijskih dokazov : magistrsko delo
ID Jedrinović, Sanja (Author), ID Magajna, Zlatan (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/4662 This link opens in a new window

Abstract
Čeprav je dokazovanje srž matematike, mnogi učenci ne čutijo potrebe po dokazih in celo ne razumejo koncepta dokazovanja. Magistrsko delo obravnava bralno razumevanje dokazov, ki je pomemben in pri pouku matematike pogosto spregledan vidik razumevanja dokazov. V teoretičnem delu magistrske naloge predstavimo dokazovanje v šolski matematiki in pogled na dokaze s strani učencev in učiteljev. Podrobneje se posvetimo geometrijskim dokazom in različnim načinom reprezentacije le-teh. Pri tem največ pozornosti namenimo odstavčnemu zapisu dokaza, dvostolpčnemu zapisu dokaza in zapisu dokaza s pomočjo diagrama poteka. Koncept razumevanja dokaza povežemo s samo bralno sposobnostjo učencev in predstavimo vidike, ki nakazujejo stopnje razumevanja dokaza. Ti vidiki so: osnovno znanje, logični status, povzemanje, generalizacija in uporaba. Vidike strukturno umestimo med nivoje bralnega razumevanja, kot sta jih opredelila Yang in Lin v svojem modelu bralnega razumevanja geometrijskih dokazov. Z empiričnim delom magistrske naloge s pilotno kvantitativno raziskavo na dijakih 2. letnika srednješolskega programa gimnazije ugotavljamo razlike v doseženi stopnji bralnega razumevanja med učenci, ki berejo različne zapise geometrijskih dokazov. Ravno tako raziščemo vpliv predznanja učencev na doseganje stopnje bralnega razumevanja glede na različne vrste zapisa dokaza. Raziskava je pokazala, da med različnimi vrstami zapisa dokaza ni pomembnih razlik v smislu doseganja nivojev bralnega razumevanja pri učencih. Kljub temu, da so učenci pri pouku spoznali samo odstavčni zapis dokaza, so se enako dobro odrezali pri branju in razumevanju dvostolpčnega zapisa in zapisa z diagramom poteka. Vendar so se na različnih stopnjah miselnih procesov pokazali določeni zapisi kot bolj učinkoviti kot drugi. Učenci so pri preverjanju osnovnega znanja najboljše rezultate pokazali ob branju zapisa z diagramom poteka in dvostolpčnega zapisa, pri nekoliko zahtevnejših vidikih, logičnem statusu in povzemanju, so se najbolje izkazali učenci, ki so brali odstavčni zapis dokaza. Pri doseganju najvišjih miselnih procesov, generalizaciji in uporabi, so najboljše rezultate pokazali učenci, ki so brali dvostolpčni zapis dokaza. Pri odstavčnem zapisu dokaza smo opazili, da so dijaki z boljšim predznanjem dosegali višje nivoje bralnega razumevanja, dijaki s slabšim predznanjem pa so dosegali nižje nivoje bralnega razumevanja. To nakazuje, da je pri pouku matematike smiselno obravnavati branje dokazov in učencem predstaviti različne vrste zapisa dokaza ter jim tako na najprimernejši način približati posamezne nivoje razumevanja dokaza.

Language:Slovenian
Keywords:bralno razumevanje geometrijskih dokazov, dvostolpčni zapis dokaza, zapis dokaza z diagramom poteka, odstavčni zapis dokaza, Yang-Linov model bralnega razumevanja geometrijskih dokazov
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Publisher:[S. Jedrinović]
Year:2017
Number of pages:VI, 90 str.
PID:20.500.12556/RUL-95173 This link opens in a new window
UDC:514:373.3(043.2)
COBISS.SI-ID:11700297 This link opens in a new window
Publication date in RUL:19.09.2017
Views:1523
Downloads:336
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Reading comprehension of various forms of presentation of geometric proofs
Abstract:
Proving is the essence of mathematics, yet many students do not feel the need for proofs and do not even understand the concept of proving. The master's thesis deals with reading comprehension of geometric proofs, which is an important and, in school mathematics, often overlooked aspect of understanding proofs. In the theoretical part of the master's thesis we consider the role of proving in school mathematics and how proofs are viewed from students’ and from teachers’ perspective. We focus on geometric proofs and present in great detail three forms of presenting them: the paragraph form, the two-column form and the flow-chart form. We connect the concept of understanding proof with reading ability and present aspects that indicate the levels of reading comprehension of geometric proofs. These aspects are: basic knowledge, logical status, summarization, generalization and application. Aspects are structurally placed among the levels of reading comprehension defined by Yang and Lin in their model of reading comprehension of geometric proofs. With the empirical part of the master's thesis, which contains a pilot quantitative study on students of the 2nd year of grammar school, we researched the differences in the achieved level of reading comprehension among students, who read different forms of geometric proofs. We also research the influence of students' previous knowledge on achieving the level of reading comprehension regarding different forms of geometric proof. The research has shown that, overall, there are no significant differences between the different forms of geometric proof in terms of achieving reading comprehension levels among students. Despite the fact that students had only learned the paragraph form of proof in class, they were equally successful in reading and understanding the two-column form of proof and the flow chart form. However, at different stages of reasoning processes, certain forms have been shown to be more effective than others. In the examination of basic knowledge, students demonstrated the best results by reading the flowchart proof form and two-column form of proof. Logical status and summarization, which are more demanding aspects, were understood best by the students who read the paragraph form. The highest mental processes, generalization and application, were achieved best by students who read a two-column form of proof. In the case of reading the paragraph proof form we noticed that students with better knowledge achieved higher levels of reading comprehension, while students with lesser previous knowledge achieved lower levels of reading comprehension. All this suggests that it is important to practice reading proofs in mathematics classes and to consider different forms of presenting proofs in order to enable students to reach, in the most appropriate way, different levels of understanding of proofs.

Keywords:primary education, geometry, osnovnošolski pouk, geometrija

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back