Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Hamiltonska razčlenitev grafa in otroški plesi : diplomsko delo
ID
Butala, Nuša
(
Author
),
ID
Kuzman, Boštjan
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/id/eprint/4652
Image galllery
Abstract
Hamiltonska faktorizacija grafa je 2-faktorizacija grafa na hamiltonske cikle. V diplomskem delu se osredotočimo na iskanje hamiltonske razčlenitve ali faktorizacije grafov K_(2n+1), K_(n,n) in K_2n- 〖nK〗_2 ter iskanja 1-faktorizacije grafov K_2n in K_(n,n). Pred tem na začetku definiramo splošne definicije in grafovske lastnosti, ki jih potrebujemo za nadaljnje razumevanje dela. To so hamiltonske poti, prirejanja ter faktorji. V razdelku o prirejanjih dokažemo Tutteov izrek, v razdelku o faktorjih in faktorizaciji pa, kdaj je graf 1-faktorabilen oziroma 2-faktorabilen. Iskanje faktorizacije v tretjem poglavju prikažemo na primeru otroških plesov, kot jih je predstavil Édouard Lucas. Vse ponazorimo s preprostimi primeri. Za nekatere primere izdelamo programsko kodo, ki problem faktorizacije reši za konkreten n.
Language:
Slovenian
Keywords:
faktor
,
1-faktorizacija
,
2-faktorizacija
,
hamiltonska faktorizacija
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
PEF - Faculty of Education
Publisher:
[N. Butala]
Year:
2017
Number of pages:
26 str.
PID:
20.500.12556/RUL-95147
UDC:
51(043.2)
COBISS.SI-ID:
11694409
Publication date in RUL:
19.09.2017
Views:
1799
Downloads:
298
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BUTALA, Nuša, 2017,
Hamiltonska razčlenitev grafa in otroški plesi : diplomsko delo
[online]. Bachelor’s thesis. N. Butala. [Accessed 11 April 2025]. Retrieved from: http://pefprints.pef.uni-lj.si/id/eprint/4652
Copy citation
Share:
Secondary language
Language:
English
Title:
Hamiltonian factorization of a graph and children's dances
Abstract:
Hamiltonian factorization of a graph is a 2-factorization of the graph into Hamiltonian cycles. In this thesis we focus on finding Hamiltonian factorization or decomposition of graphs K_(2n+1), K_(n,n), K_2n- 〖nK〗_2 and finding 1-factorization of graphs K_2n and K_(n,n). On start some general definitions and properties of a graph are needed to further understand the work. Among these are Hamiltonian paths, matchings and factors. In subsection on Matchings we prove Tutte’s theorem, in subsection of factors and factorization we define when the graph is 1-factorable or 2-factorable. In section three we present finding factorization on the example of children’s dances, as they were presented by Édouard Lucas. We illustrate these results with simple examples. For some examples we create a program code that solves the problem of factorization for concrete n.
Keywords:
mathematics
,
matematika
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back