izpis_h1_title_alt

Analiza relacij med valutnim trgom in družabnimi omrežji
ID Gabrovšek, Peter (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window, ID Mozetič, Igor (Comentor)

.pdfPDF - Presentation file, Download (1,67 MB)
MD5: 7C7BEDD8EB423C300742A170B06005B6
PID: 20.500.12556/rul/215791f6-51c6-47ca-9055-5a60d06bd2a7

Abstract
Družabna omrežja nezadržno rastejo, kot tudi njihov vpliv na vsa področja življenja. V naši nalogi smo raziskovali in analizirali odnose med valutnim trgom (imenovanim tudi Forex) in družabnimi omrežji. Posebej smo analizirali vsebine, ki zadevajo valutni tečaj EUR/USD zaradi velikega trgovalnega obsega tega para. Družabno omrežje Twitter smo analizirali v obdobju treh let. Zbrali smo podatke o gibanjih valutnega tečaja, podatke o dogodkih in tvite. Tvite smo anotirali na podlagi vsebine oziroma pričakovanj avtorjev glede gibanja tečajev. Z analizo uporabnikov Twitterja in tvitov v povezavi z EUR in USD smo odkrili skupine uporabnikov z različnimi obnašanji. Na podlagi ugotovitev smo razvili model za klasifikacijo uporabnikov v skupine. Ustvarjen model predstavlja osnovo raziskave in ugotovitev. Razvili smo spletno aplikacijo za prikaz podatkov, pregled podatkov in prikaz rezultatov analiz. Aplikacija nam omogoča hitro analizo in razhroščevanje le-te. Dogodki povezani z EUR in USD imajo velik vpliv na gibanje tečajev. Analizirali smo povezave med gibanji tečajev na Forexu in sentimentom tvitov v času okoli dogodkov. Analizirali smo uspešnost napovedovanja različnih skupin uporabnikov v času dogodkov (npr. izjave vplivnih finančnih ustanov v EU in ZDA). Običajno se to izrazi v povečanem številu tvitov. Skupine uporabnikov se razlikujejo v moči napovedovanja valutnih gibanj. Nekatere skupine uporabnikov so pri napovedovanju valutnih gibanj celo uspešnejše od poklicnih analitikov, kar potrjuje uspešnost našega modela.

Language:Slovenian
Keywords:študija dogodkov, valutni trg, Twitter, umetna inteligenca, podatkovno rudarjenje
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-95134 This link opens in a new window
Publication date in RUL:15.09.2017
Views:1425
Downloads:683
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Analysis of relations between currency market and social networks
Abstract:
Social media are gaining an unprecedented momentum as well as impact on many areas of our life. In this thesis we investigate and analyse the relationship between foreign exchange market (also called Forex) and social media. Specifically, we analyse topics concerning EUR/USD exchange rate because of the large trading volume of the currency pair. We analysed Twitter in the span of three years. We gathered the data on market movements, events, and Twitter posts. We annotated the tweets with authors' expectation of the Forex movement. By analysing tweets and users tweeting about EUR and USD, we discovered groups of users that behave differently and devised a model for classifying users into these groups. The model is the basis of our research and findings. We developed a web application for visualisation and browsing the data and results of the analyses. This application enabled fast analysis and debugging of it. Events connected to EUR and USD have high influence on market movements. We studied the relations between Forex movements and Twitter sentiment around the time of events. We analysed the performance of different user groups around the events (i.e. financial announcements in the USA and EU), which usually result in significant increase of Twitter volume. Predictive performance of the user groups varies in terms of describing market movements. Certain user groups give better results than professional analysts which shows efficiency of our user classification model.

Keywords:event study, Forex, currency market, Twitter, artificial intelligence, data mining

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back