izpis_h1_title_alt

Avtomatska analiza in klasifikacija glasbenih besedil na podlagi čustev
ID LAMPRET, ROK (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (443,96 KB)
MD5: 553F1EE9053CE1B7D0559C7ED78BD63A
PID: 20.500.12556/rul/c8328141-fd73-4b75-a552-8c1615840639

Abstract
Pred kratkim so v študiji ugotovili, da lahko z uporabo nekaterih novih značilk občutno izboljšajo modele za klasifikacijo in regresijo glasbenih besedil glede na valenco in aktivnost čustev. Na podlagi te študije smo implementirali svoj sistem za tovrstno avtomatsko analizo glasbenih besedil. Delali smo z glasbenimi besedili v angleškem jeziku. Najprej smo s spleta pridobili vsa glasbena besedila. Ta besedila smo z našim procesorjem besedil preoblikovali v primerno obliko za ekstrakcijo značilk. Pripravili smo vrsto funkcij za pridobivanje značilk, s katerimi smo nato iz besedil izluščili različne tipe značilk. Nato smo značilke, s pomočjo algoritmov za selekcijo značilk, razvrstili po pomembnosti in izbrali le najpomembnejše. Z naključnim iskanjem parametrov smo optimizirali še parametre učnih algoritmov, ki smo jih učili na izbranih značilkah. Za učenje klasifikatorjev in regresorjev smo uporabili metodo podpornih vektorjev in Gradient Boosting. Uspešnost naših modelov smo na koncu ocenili s stratificiranim 10-kratnim prečnim preverjanjem. V delu predstavimo metode, ki smo jih uporabili za izgradnjo sistema, končno rešitev in rezultate, ki jih naš sistem dosega v primerjavi s sistemom iz prej omenjene študije.

Language:Slovenian
Keywords:glasbena besedila, prepoznavanje čustev, pridobivanje značilk, procesiranje naravnega jezika, strojno učenje
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-95109 This link opens in a new window
Publication date in RUL:14.09.2017
Views:1557
Downloads:265
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automated Analysis and Emotion-based Classification of Music Lyrics
Abstract:
In a recent study on Lyrics Music Emotion Recognition a new set of features was proposed. These new features were proved to increase accuracy of existing models for classification and regression based on valence and arousal of emotion in lyrics. Based on the findings of this study we have implemented our own system for automatically acquiring, analyzing and classifying lyrics. We only dealt with lyrics in English. First we acquired the lyrics from the web. Then we prepared the lyrics for feature extraction, using the preprocessor we implemented. A variety of functions were implemented for feature extraction, which were then used to extract features from the preprocessed lyrics. Using feature selection algorithms we ranked the features and selected only the best. Using randomized hyper-parameter optimization we optimized the parameters of learning methods for our models. For classification and regression we used two learning algorithms, Support Vector Machine and Gradient Boosting. In the end we evaluated our models with stratified 10-fold cross validation. In this work we present the methods that we used to build our system, final solution and the results that we achieved in comparison to the study we based our system on.

Keywords:emotion recognition, feature extraction, lyrics, machine learning, natural language processing

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back