izpis_h1_title_alt

Operatorski račun nad programskimi prostori
ID SAJOVIC, ŽIGA (Author), ID Robič, Borut (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (457,62 KB)
MD5: 4508EC59FF5C7DC478FD219CAA2B8F10
PID: 20.500.12556/rul/f1db278e-3076-4ba3-8ae5-23dede72375f

Abstract
V delu razvijemo algebraični jezik, ki predstavlja formalni račun za globoko učenje, in je hkrati model, v katerem je programe mogoče tako implementirati kot tudi preučevati. V ta namen razvijemo abstraktni računski model avtomatsko odvedljivih programov. V njem so programi elementi t. i. programskih prostorov. Programe gledamo kot preslikave končno-dimenzionalnega vektorskega prostora vase, imenovanega navidezni pomnilniški prostor. Navidezni pomnilniški prostor je algebra programov, torej algebraična podatkovna struktura (s katero je mogoče računati). Elementi navideznega pomnilniškega prostora pa omogočajo razvoj programov v neskončne tenzorske vrste. Na programskih prostorih definiramo operator odvajanja, s pomočjo njegovih potenc pa implementiramo posplošen operator premika in operator kompozicije programov. Tako konstruiran algebraični jezik je poln model globokega učenja. Omogoča takšen način izražanja programov, da že njihov zapis nudi teoretični vpogled vanje.

Language:Slovenian
Keywords:operatorska algebra, tenzorska algebra, nevronske mreže, globoko učenje, avtomatsko odvajanje
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-95108 This link opens in a new window
Publication date in RUL:14.09.2017
Views:2477
Downloads:432
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Operational calculus on program spaces
Abstract:
In this work we develop an algebraic language that represents a formal calculus for deep learning and is, at the same time a model which enables implementations and investigations of programs. To this purpose, we develop an abstract computational model of automatically differentiable programs. In the model, programs are elements of op. cit. programming spaces. Programs are viewed as maps from a finite-dimensional vector space to itself op. cit. virtual memory space. Virtual memory space is an algebra of programs, an algebraic data structure (one can calculate with). The elements of the virtual memory space give the expansion of a program into an infinite tensor series. We define a differential operator on programming spaces and, using its powers, implement the general shift operator and the operator of program composition. The algebraic language constructed in this way is a complete model of deep learning. It enables us to express programs in such a way, that their properties may be derived from their source codes.

Keywords:operator algebra, tensor algebra, neural networks, deep learning, automatic differentiation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back