izpis_h1_title_alt

Barvanje črnobelih slik z globokimi modeli
ID Godec, Primož (Author), ID Zupan, Blaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (35,28 MB)
MD5: F3A069A777A4075A4B1A1209933B0759
PID: 20.500.12556/rul/5336a0a3-0af5-4394-b51f-6832d39fcaeb

Abstract
Barvna fotografija je prišla v vsakdanjo uporabo šele v zadnjih 50 letih, zato so razni arhivi polni črno-belih fotografij, katere bi njihovi lastniki radi obarvali. V ta namen so bili razviti različni algoritmični pristopi. V disertaciji predstavljamo nekaj novih avtomatskih pristopov za barvanje črno-belih slik in videov, ki so osnovani na strojnem učenju in konvolucijskih nevronskih mrežah. Pristope primerjamo s pristopi iz sorodnih del in jih preizkusimo na starih črno-belih slikah. Iz rezultatov je razvidno, da naši pristopi dosegajo kvaliteto barvanja pristopov iz sorodnih del. Naš nov pristop, ki obarva slike po delih, pa izboljša barvanje slik velikosti, ki so različne od tistih, na katerih je bila mreža naučena. Ta pristop je tudi naučen hitreje kot obstoječi pristopi, ki za barvanje uporabljajo celotne slike.

Language:Slovenian
Keywords:umetna inteligenca, strojno učenje, globoke nevronske mreže, barvanje črno-belih slik
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-94553 This link opens in a new window
Publication date in RUL:04.09.2017
Views:2390
Downloads:929
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Deep models for image coloring
Abstract:
Since the color photography came into everyday use in the last fifty years our grandparents are still owning many black and white photographs which we would like to colorize. Researchers are therefore encouraged to develop algorithmic approaches for black and white photographs and video colorization. We have developed a set of automatic approaches based on the machine learning and neural networks, which are using regression and classification. We compared them with approaches from related work. Our approaches reach the quality of colorization comparable to those from related works. Our new approach on image parts improves colorization of images which size is different from those from the training set. This approach is also faster in training than existing approaches that uses full images for learing.

Keywords:umetna inteligenca, strojno učenje, globoke nevronske mreže, barvanje črno-belih slik

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back