The design of steel full-strength bolted beam-to-column moment connections considering the overstrength factor for the beam material according to SIST EN 1998-1 is particularly demanding especially in case of heavy beam profile in combination to higher grade material. The elastic design of the full-strength connection leads to very stocky joint, which is often not acceptable from architectural point of view. The component method presented in SIST EN 1993-1-8 that was developed mainly for the plastic design of partial-strength joints may also be used for the plastic design of full-strength connections.
This thesis studies bolted beam-to-column joints under monotonic and cyclic loading, particularly hot rolled HEA 600, S355 beam that has high bending capacity. Two different configurations of bolted connection of HEA 600 to column are studied in order to achieve full-strength connection as defined in SIST EN 1998-1, namely eight-bolt rib stiffened and haunched connection. Both joint configurations are first calculated according to SIST EN 1993-1-8 using the component method, where bolt forces and joint bending capacity were determined. Rib stiffened configuration is also designed considering the procedure given in ANSI/AISC 385-16. The numerical model, based on this design, was built in FE software Abaqus to observe behaviour under monotonic and cyclic loading and to investigate the adequacy of design according to the used building codes.
|