izpis_h1_title_alt

Fina lokalizacija grč z metodami računalniškega vida
ID ŠELA, SAMO (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (12,21 MB)
MD5: D9950561548097017EAC6C6C5B9AF872
PID: 20.500.12556/rul/e9d2ed84-7f83-4f96-8009-7771588f050b

Abstract
Cilj diplomskega dela je uspešno rešiti problem fine segmentacije grč in lesa. Tehnološka dovršenost v slovenski lesnopredelovalni industriji ni nekaj povsem samoumevnega, obstaja pa zavedanje, da je za konkurenčnost panoge nujno potreben napredek. Naše delo in prispevek se dotikata vpeljave strojnega vida v proces avtomatizacija pri proizvodnji opažnih plošč. Ozko grlo v procesu izdelave je namreč ročno krpanje prisotnih grč, ena izmed ključnih komponent avtomatizacije takšnega sistema pa je dobra lokalizacija grč. V delu smo širše orisali problem segmentacije. Predlagali in ovrednotili smo metodo segmentacije na podlagi iskanja najmanjšega prereza oziroma največjega pretoka v grafu. Metoda na podlagi grobo lokalizirane grče določi modela verjetnostne porazdelitve mešanice Gaussov za grčo in ozadje. Na podlagi pridobljenih modelov določimo območne in mejne uteži ter izgradimo graf, pri tem pa področje izven grobe regije grče upoštevamo kot seme in ga pripišemo ozadju. Izračun minimalnega prereza grafa je hkrati rešitev segmentacije. Rezultat sta dve ločeni regiji, kjer ena pripada grči, druga pa lesu. Vrednotenje predlagane metode smo predstavili na zbirki grč, pridobljeni pri enem izmed slovenskih proizvajalcev opažnih plošč med procesom izdelave. Za potrebo validacije metode smo zbirko 119 grč primerno anotirali in jo ponujamo kot javno dobro. Predlagana metoda je dosegla na celotni zbirki 99,00% točnost pri preciznosti 0,94 in priklicu 0,98.

Language:Slovenian
Keywords:segmentacija, opažne plošče, grče, les, najmanjši prerez, največji pretok, najmanjši prerez v grafu
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-91219 This link opens in a new window
Publication date in RUL:24.03.2017
Views:1270
Downloads:371
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Fine localization of wood knots using computer vision methods
Abstract:
The aim of this thesis is to find a viable solution for the fine segmentation of wood knots and lumber. Technological flawlessness is not inherent to the Slovenian wood processing industry and there is recognition that advancement is needed in order to ensure the industry’s competitiveness. This work and contribution is concerned with the integration of computer vision in the automated process of manufacturing shuttering panels. The process of manually patching wood knots represents a bottleneck in the manufacturing process while the effective localization of wood knots is one of the key components in automating this type of system. This paper presents a broad outline of the problem of segmentation. Further, it proposes and evaluates a method of segmentation based on determining the minimum cut, or rather, the maximum flow, on a graph. Using a roughly localized wood knot as its basis, the model determines the probability distribution of the Gaussian mixture for the wood knot and background. Section and border weights are determined on the basis of the acquired models, a graph is constructed and the region outside of the rough section of the wood knot is considered as a base and worked into the background. Calculating the minimum cut of the graph simultaneously presents a solution for segmentation. The result are two separate regions, where one region belongs to the knot and the other to the wood. An evaluation of the proposed method was presented with a collection of wood knots obtained from a Slovenian manufacturer of shuttering panels during the manufacturing process. For the purpose of validating the method, the collection of 119 wood knots was suitably annotated and made available as a public good. Over the entire collection, the proposed method achieved 99.00% accuracy for a precision of 0.94 and recall 0.98.

Keywords:segmentation, shuttering panels, knots, wood, minimum cut, maximum flow, graph cuts

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back