izpis_h1_title_alt

ELEKTRIČNI MOTOR Z MODULIRANIM MAGNETNIM POLJEM
ID VUKOTIĆ, MARIO (Avtor), ID Miljavec, Damijan (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (6,83 MB)
MD5: 7A6105DF065E0BD9EFC38436E69C0993
PID: 20.500.12556/rul/ed238b9a-623f-4023-b0b8-28a3bdb606e0

Izvleček
Področje raziskovanja motorjev z moduliranim magnetnim poljem, ki uporabljajo trajne magnete, se je začelo razvijati v devetdesetih letih prejšnjega stoletja, pred tem pa je bil ta tip motorja poznan pod imenom Vernierjev reluktančni motor, ki pa je pri delovanju izkoriščal le reluktanco. Z uporabo trajnih magnetov se je gostota navora tega tipa motorja precej dvignila, faktor moči pa je ostal nizek. Dosedanje raziskave ne obravnavajo celovito povezave med geometrijskimi parametri na eni ter navorom in faktorjem moči na drugi strani. V prvem poglavju doktorske disertacije smo opisali postopek za analitičen izračun magnetnega polja v zračni reži in pokaže nepopolnosti v osnovni navorni enačbi, ki se je do sedaj uporabljala v znanstveni literaturi. Ta je nadgrajena na način, da upošteva tudi stresano polje v utoru, ki ga je z opisanim postopkom možno izračunati tudi analitično. Izpeljana je enačba za izračun faktorja moči, kjer je pokazano, da nanj vpliva oblika magnetnega polja, delež stresanega magnetnega polja in induktivnost statorskega navitja, za katero je izpeljan analitični postopek izračuna. Enačba za analitičen izračun induktivnosti je splošna in jo možno uporabiti v kateremkoli rotacijskem električnem stroju z odprtimi utori in neizraženim rotorjem. Na koncu prvega poglavja je narejena še numerična analiza samodržnega navora in valovitosti navora ter obratovalne lastnosti. Za potrditev teorije je bil izdelan prototipni motor, t. i. »realni verifikacijski model«, na katerem smo izvedli meritve, ki so opisane v drugem poglavju. Na prvi pogled se zdi, da so meritve povsem drugačne od teoretičnih predpostavk, a se po podrobni analizi vzrokov za povišane izgube izkaže, da potrjujejo teoretična dognanja, vendar pa je potrebno več pozornosti nameniti proizvodnim tehnologijam. V tretjem poglavju je opisan postopek oblikovanja motorja za uporabo v cestnem električnem vozilu, s katerim smo želeli še dodatno izboljšati obstoječo konstrukcijo. Z načrtovanjem poskusov po Taguchiju poiščemo najbolj vplivne parametre, z večparametrsko optimizacijo z uporabo genetskega algoritma pa poiščemo optimalne vrednosti parametrov. Optimalna konstrukcija, ki jo potrdimo z zaključnim numeričnim izračunom, ima višji maksimalni navor, nižjo maso, a tudi nekoliko nižji izkoristek. IV V četrtem poglavju med seboj primerjamo različne tipe najbolj pogosto uporabljenih rotorskih konstrukcij, kjer so magneti pozicionirani na različne načine. Pri primerjavi uporabimo teoretična izhodišča iz prvega poglavja. Izkaže se, da sta uporabni le konstrukcija rotorja s površinsko nameščenimi magneti in konstrukcija rotorja z ugreznjenimi magneti, ostale oblike pa imajo preslabe lastnosti. Peto poglavje obravnava motor z moduliranim magnetnim poljem, ki pri delovanju izkorišča več harmonskih komponent magnetnega polja kot Vernierjev motor s trajnimi magneti. Za doseganje tega sta možna dva načina – z oblikovanjem magnetne napetosti rotorskih magnetov ali z oblikovanjem permeance. Izkaže se, da so obratovalne lastnosti slabše kot pri Vernierjevem motorju, zato se ga ne splača uporabiti za pogon vozila. Uporabo večih harmonskih komponent smo implementirali tudi v splošni sinhronski motor z dvema navitjema, katerega obratovalne lastnosti so primerljive z Vernierjevim motorjem. Vir tehniškega znanja so tudi patenti, zato je bilo pregledano nekaj najbolj zanimivih patentov, ki so zajeti v šestem poglavju. Eden izmed njih najbolj izstopa, zato mu je bilo posvečeno nekoliko več pozornosti. Z uporabo druge kombinacije števila magnetov in števila statorskih zob se obratovalne lastnosti motorja z moduliranim magnetnim poljem izboljšajo. V zaključku so podani nadaljnji koraki pri raziskovanju motorja z moduliranim magnetnim poljem. V sklopu doktorske disertacije smo izpolnili vse pričakovane izvirne prispevke k znanosti, ki so predstavljeni in opisani v osmem poglavju. Pri raziskovanju smo prišli do nekaterih novosti na področju motorjev z moduliranim magnetnim poljem, ki so zbrani in predstavljeni v devetem poglavju. V okviru raziskovanja smo napisali tudi znanstveni članek Design of a permanent-magnet fluxmodulated machine with a high torque density and high power factor, ki je bil januarja 2016 objavljen v reviji IET Electric Power Applications.

Jezik:Slovenski jezik
Ključne besede:motor z moduliranim magnetnim poljem, modulacija magnetnega polja, magnetna prestava, Vernierjev motor, optimizacija, metoda Taguchi, genetski algoritem, večnivojska modulacija
Vrsta gradiva:Doktorsko delo/naloga
Organizacija:FE - Fakulteta za elektrotehniko
Leto izida:2017
PID:20.500.12556/RUL-91058 Povezava se odpre v novem oknu
COBISS.SI-ID:11726164 Povezava se odpre v novem oknu
Datum objave v RUL:17.03.2017
Število ogledov:2308
Število prenosov:809
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:ELECTRIC MOTOR WITH MODULATED MAGNETIC FIELD
Izvleček:
Research area of the flux-modulated motors with permanent magnets began developing in the 1990s. Before that, the machine was known as Vernier reluctance motor, which used only reluctance for operation. With the usage of permanent magnets, the torque density of this motor type has been increased, but the power factor remained low. Current researches do not discuss the connection between the geometric parameters on one hand and the torque and power factor on the other. In the first section, the thesis describes the procedure for analytical calculation of the air-gap magnetic field and shows the imperfections in the basic torque equation, which has been used in the scientific literature. The torque equation has been improved in a way that it takes also the leakage magnetic field in a slot into account, which can be calculated also analytically with the procedure, described in the first section. The power-factor equation is derived. It shows that the power factor is influenced by the magnetic field shape, share of the leakage magnetic field and inductance of the stator winding. The latter can be calculated analytically using the derived equation and can be used generally for any rotating electric machine with open slots and nonsalient rotor. At the end of the first section, the calculations of the cogging torque and torque ripple are made as well as the operational properties. An electric motor has been built in order to confirm the theory (“realistic verification model”). It was used to conduct the measurements that are described in the second section. At first glance it seems that the measurements’ results are completely different from the theoretical assumptions. After further analysis of the increased losses had been made, it turned out that the assumptions were correct. However, more attention has to be dedicated to the production technologies. In the third section the motor design procedure for the use in the road electric vehicle is described. Design of experiments via Taguchi method is used to find the most influential parameters, whereas the multiparameter optimisation using genetic algorithm is used to find their optimal values. The optimal design, which was confirmed with the final numerical calculation, has higher maximum torque, lower weight, but also slightly lower efficiency. VI In the fourth section, a comparison between different rotor types is made, where the magnets are positioned differently in the rotor. When comparing the rotor types, the theoretical basis from the first section is used. It turns out that only the rotors with surface-mounted and spoke permanent magnets can be used. The properties of other types are too poor. Fifth section deals with the flux-modulated motor that uses more harmonic components of magnetic field than permanent-magnet Vernier motor. This can be achieved in two ways, either with permanent-magnet MMF reshaping or permeance reshaping. It turns out that the properties are not as good as in Verner motor, thus it is not attractive for the vehicle propulsion, unless a method for achieving the desired values of certain harmonic components of magnetic field is found. The usage of multiple harmonic components can be transferred to the general synchronous motor. Its properties are comparable with the Vernier motor. The patents are also the source of the technical knowledge, thus some of the most interesting ones have been read. They are gathered in the sixth section. One of them stands out, thus more attention has been drawn to it. Using different combinations of the number of magnets and number of stator teeth, the operational properties can be improved. In the conclusion, the next steps in research of flux-modulated motor are given. In the scope of this thesis, all of the expected contribution to science have been fulfilled. They are presented and explained in the eight section. During the research, some novelties on this research area that are gathered and presented in the ninth section have been found. Within the research process, a scientific paper Design of a permanent-magnet flux-modulated machine with a high torque density and high power factor has been published in the journal IET Electric Power Applications in January 2016.

Ključne besede:flux-modulated motor, flux modulation, magnetic gear, Vernier motor, optimisation, Taguchi method, genetic algorithm, multilevel modulation

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj