Details

Izdelava in predelava zlitine EN AW 6082 z dodatkom cirkonija : diplomsko delo
ID Kos, Dejan (Author), ID Smolej, Anton (Mentor) More about this mentor... This link opens in a new window, ID Strnad, Viljem (Comentor)

.pdfPDF - Presentation file, Download (4,02 MB)
MD5: 1804C372CFF80DA204FAD50E97B9F2D6
PID: 20.500.12556/rul/b00623fd-40dd-4fd0-9b11-02551f69cdab

Language:Slovenian
Keywords:aluminijeva zlitina, cirkonij, mehanske lastnosti, mikrostruktura
Work type:High school thesis
Typology:2.11 - Undergraduate Thesis
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:[D. Kos]
Year:2016
Number of pages:VI, 70 f.
PID:20.500.12556/RUL-89068 This link opens in a new window
UDC:669.2/.8
COBISS.SI-ID:1605727 This link opens in a new window
Publication date in RUL:10.02.2017
Views:5982
Downloads:1011
Metadata:XML DC-XML DC-RDF
:
KOS, Dejan, 2016, Izdelava in predelava zlitine EN AW 6082 z dodatkom cirkonija : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : D. Kos. [Accessed 15 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=89068
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:aluminium alloy, zirconium, mechanical properties, microstructure

Similar documents

Similar works from RUL:
  1. Part of speech tagging of slovene language using deep neural networks
  2. Superposition and compression of deep neutral networks
  3. Object detection and classification in aquatic environment using convolutional neural networks
  4. Analysis of infrared spectra using deep neural networks
  5. Automatic text summarization of Slovene texts using deep neural networks
Similar works from other Slovenian collections:
  1. Predicting GPS tracks with deep neural networks
  2. Comparison of different deep neural network learning algorithms in autonomous driving
  3. Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami
  4. The preparation of photos' dataset and its classification using deep neural networks
  5. Time series classification based on convolutional neural networks

Back