Details

Iskanje in razvrščanje spletnih trgovin
ID BIRSA, ARON (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (737,37 KB)
MD5: 3B7E237247E23027DC89EDA53763B1A1
PID: 20.500.12556/rul/7e9473e0-8f19-4a0b-8711-b8696683182f

Abstract
Cilj diplomske naloge je razvoj orodja, ki omogoča avtomatsko zaznavanje spletnih trgovin glede na tip izdelkov, ki jih ponuja. Spletne strani smo klasificirali v sedem vnaprej določenih kategorij: starine in zbirke, oblačila, zabavna elektronika, pohištvo, dom in vrt, nakit in pisarniški izdelke. Glavni problem je bil pridobivanje ustreznih podatkov za izgradnjo učne in testne množice ter klasificiranje spletnih strani. Uporabili smo naslednje metode strojnega učenja: naivni Bayesov klasifikator, k-najbližjih sosedov, metodo naključnih gozdov, nevronsko mrežo in metodo podpornih vektorjev. Najbolj obetavne rezulate smo dobili z metodo podpornih vektorjev.

Language:Slovenian
Keywords:specializirani iskalnik, podatkovno rudarjenje, strojno učenje, spletne trgovine, analiza besedil, naivni Bayesov klasifikator, k-najbližjih sosedov, metoda naključnih gozdov, nevronska mreža, metoda podpornih vektorjev.
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2017
PID:20.500.12556/RUL-88879 This link opens in a new window
Publication date in RUL:24.01.2017
Views:2058
Downloads:658
Metadata:XML DC-XML DC-RDF
:
BIRSA, ARON, 2017, Iskanje in razvrščanje spletnih trgovin [online]. Bachelor’s thesis. [Accessed 2 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=88879
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Search and classification of web shops
Abstract:
The aim of the thesis was to develop a tool for automatic classification of online stores depending on the type of products they offer. Websites are classified into seven predefined categories: antiques and collectibles, cloth- ing, consumer electronics, furniture, home and garden, jewelry and office products. The main problem was getting relevant data to build a learning and test data set and classifying web sites. The following machine learning methods were used: naive Bayesian classifier, k-nearest neighbors algorithm, random forests, neural networks and support vector machine. The most promising result were obtained using the support vector machine classifier.

Keywords:specialized search engine, data mining, machine learning, e- commerce, text analysis, naive Bayesian classifier, k-nearest neighbors algo- rithm, random forests, neural networks, support vector machine.

Similar documents

Similar works from RUL:
  1. Comparison of the clinical and analytical performance of Alinity m HR HPV and cobas 4800 HPV assays in a population-based screening setting
  2. Genomic diversity of E7 gene of Slovenian isolates of human papillomavirus genotype 31
  3. Molecular characterization of human papillomavirus HPV-16 variants in head and neck and anogenital region
  4. Commercially available molecular tests for human papillomaviruses
  5. Comparison of comercially available molecular tests for human papillomaviruses in early detection of cervical cancer
Similar works from other Slovenian collections:
  1. Advances in targeting HPV infection as potential alternative prophylactic means
  2. Parents perspective on Human papilloma virus vaccination
  3. Development of a novel PCR-based assay for high-risk human papillomavirus detection and genotyping in self collected cervicovaginal samples
  4. Cervical Cancer Detection Using High-Risk Human Papillomavirus Testing
  5. Okužbe z visokorizičnimi genotipi HPV in testiranje HPV v cervikalnem presejalnem programu

Back