Details

Kolekcija kopalk namenjena osebam z multiplo sklerozo : diplomsko delo
ID Podrekar, Nastja (Author), ID Peršuh, Nataša (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (70,06 MB)
MD5: 19BD7496EF49E983BD3B78D2EE1466C8
PID: 20.500.12556/rul/17558672-971a-44e9-a4af-af695e367a42

Language:Slovenian
Keywords:multipla skleroza, vodne aktivnosti, kopalke, ortopedska oblačila, prilagojeni kroji
Work type:Bachelor thesis/paper
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:[N. Podrekar]
Year:2016
Number of pages:XI, 40 f.
PID:20.500.12556/RUL-88291 This link opens in a new window
UDC:391
COBISS.SI-ID:3317616 This link opens in a new window
Publication date in RUL:22.12.2016
Views:4163
Downloads:454
Metadata:XML DC-XML DC-RDF
:
PODREKAR, Nastja, 2016, Kolekcija kopalk namenjena osebam z multiplo sklerozo : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : N. Podrekar. [Accessed 29 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=88291
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:A swimwear collection aimed towards people with multiple sclerosis

Similar documents

Similar works from RUL:
  1. Using machine learning for sentiment analysis of Slovene web commentaries
  2. Classification of viral genomes using machine learning
  3. System for sentiment analysis of comments about mobile applications
  4. Computer-vision-based tree trunk recognition
  5. Calculation of price indices with machine learning for automatic product classification
Similar works from other Slovenian collections:
  1. CLASSIFICATION OF AUDIO SIGNALS INTO MUSIC GENRES
  2. Use of vector embedding for intelligent processing of slovene text
  3. Evaluation of machine learning methods with natural language processing
  4. DETERMINING GENETIC PREDICTORS BY USING INTELLIGENT SYSTEMS
  5. Using words from daily news headlines to predict the movement of stock market indices

Back