izpis_h1_title_alt

Primerjava med realno in p-adično analizo : magistrsko delo
ID Femc, Ida (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/4141/ This link opens in a new window

Abstract
Racionalna števila lahko pri upoštevanju običajne absolutne vrednosti razširimo do realnih števil. Če namesto običajne absolutne vrednosti upoštevamo p-adično absolutno vrednost, lahko racionalna števila Q razširimo do p-adičnih števil, ki jih označimo s Q_p. Magistrsko delo je nadaljevanje diplomskega dela z naslovom »p-adične norme in p-adična števila«. V njem smo predstavili absolutne vrednosti, ki jih lahko srečamo na racionalnih številih Q, dokazali smo izrek Ostrowskega, vpeljali p-adična števila in nekaj besed namenili zapisu p-adičnih števil. V magistrskem delu pa se posvetimo primerjanju realnih in p-adičnih števil. Najprej primerjamo zapis p-adičnih in realnih števil ter ugotovimo, da je zapis p-adičnih števil analogen decimalnemu zapisu realnih števil, le da pri realnih številih ta ni nujno enoličen tako kot pri p-adičnih. Nato primerjamo topologijo realnih števil in topologijo p-adičnih števil ter podamo povezavo med Cantorjevo množico ter p-adičnimi števili. V nadaljevanju pa predstavimo primerjavo med realno in p-adično analizo, saj so p-adična števila (tako kot realna števila) polno normirano polje, v katerih lahko obravnavamo podobne analitične probleme kot v realnih številih. Na koncu pogledamo, kako je v p-adičnih številih z aritmetičnimi operacijami, posvetimo se zaporedjem in vrstam ter preučimo logaritemsko in eksponentno funkcijo.

Language:Slovenian
Keywords:realna števila, p-adična števila, zaporedja, vrste, potenčne vrste
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Publisher:[I. Femc]
Year:2016
Number of pages:61 str.
PID:20.500.12556/RUL-87098 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:11330121 This link opens in a new window
Publication date in RUL:04.09.2017
Views:1725
Downloads:282
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of real and p-adic analysis
Abstract:
When considering the usual absolute value, rational numbers can be extended to real numbers. If we were to take any p-adic absolute value on rational numbers instead of the usual absolute value, we can extend rational number to p-adic numbers. This master’s thesis is an expansion of the undergrad thesis titled »p-adic norms and p-adic numbers«. In my diploma thesis absolute values on rational numbers were introduced, Ostrowski's theorem was proven, p-adic numbers were constructed and their representation was briefly discussed. This master’s thesis focuses on comparing real numbers with p-adic numbers. Decimal representations of p-adic and real numbers are compared. It can be seen that the representation of p-adic numbers is analogue to the representation of decimal real numbers, although p-adic numbers have unique representations while representations of real numbers are sometimes not unique. Topology of real numbers and p-adic numbers is compared and the connection between Cantor’s set and p-adic numbers is described. Afterwards, a comparison between the real and the p-adic analysis is made. p-adic numbers (same as real numbers) are a complete normed field in which similar analytical problems can be solved as in real numbers. We finish the thesis with discussions about arithmetic operations in p-adic numbers, sequences, series, logarithmic and exponential functions.

Keywords:mathematics, matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back