izpis_h1_title_alt

Problem pokrivnih poti
ID KOMATAR, ROK (Author), ID Fijavž, Gašper (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,01 MB)
MD5: EDB6D59BAED0731A3215A1027E8B5D72
PID: 20.500.12556/rul/727d53f1-2549-4416-af22-78501f165904

Abstract
V nalogi obravnavamo problem pokrivnih poti. Pokrivna pot območja O je pot-krivulja P, od katere je vsaka točka območja O oddaljena največ za d, hkrati pa P poteka samo v notranjosti območja O. Iščemo pokrivno pot kar se da majhne dolžine. Omejimo se na primere s poligonskimi območji in poligonskimi pokrivnimi potmi. K problemu pristopimo na način deli in vladaj, poligonsko območje tlakujemo z manjšimi tlakovci, pokrivne poti na tlakovcih pa zlepimo v pokrivno pot celotnega območja. V nalogi opazujemo dve različni tlakovanji, trapezno in Boustrophedonovo tlakovanje, optimizacijo dolžine poti pa naredimo vzdolž različnih zaporedij pokrivanja tlakovcev in izbire ustrezne smeri tlakovanja. Metodi primerjamo na različnih tipih poligonov. Zaključimo lahko, da je Boustrophedonov pristop učinkovitejši, izbira optimalnega kota tlakovanja pa je bistveno odvisna od zveze med zahtevano bližino d in velikostjo območja.

Language:Slovenian
Keywords:pokrivna pot, območje, ravninski poligon, tlakovanje, optimizacija poti, najboljša smer
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-87074 This link opens in a new window
Publication date in RUL:18.11.2016
Views:1328
Downloads:315
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Coverage path problem
Abstract:
The thesis considers the coverage path planning CPP problem. A coverage path of a region O is a path-curve P ⊆ Q, so that for every point x ∈ O the distance between x and P is at most d. We are looking for a coverage path whose length is as small as possible. We focus on polygonal regions and also require that P is a polygonal line. We use a divide-and-conquer approach, we first tesselate our region with smaller tiles, respective coverage paths of individual tiles are later combined in a global coverage path. We limit ourselves to two different tesselations, a tesselation using trapeze tiles and the Boustrophedon tesselation. We optimize the length of the coverage path using different orderings of tiles along a coverage path as well as changing the direction of our tesselation. Considering several families of polygons we can state that choosing Boustrophedon tesselation outperforms the trapeze one, and that the choice of the optimal direction of the tesselation is highly dependent on the ratio between size of O and required resolution d.

Keywords:coverage path, region, plane polygon, tesselation, path optimization, best direction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back