izpis_h1_title_alt

ZASNOVA IN IZVEDBA VISOKOSTABILNEGA OPTOELEKTRONSKEGA OSCILATORJA
ID Bogataj, Luka (Author), ID Vidmar, Matjaž (Mentor) More about this mentor... This link opens in a new window, ID Batagelj, Boštjan (Co-mentor)

.pdfPDF - Presentation file, Download (22,89 MB)
MD5: E5D5683A2D4600279F4AA590AC0DA4B2
PID: 20.500.12556/rul/b7371f54-b3d9-436a-988e-a8a6997c83c1

Abstract
Mikrovalovni oscilatorji so danes nepogrešljiv del merilne tehnike in komunikacijskih sistemov. Med seboj se ločijo po lastnostih, kot so dolgoročna stabilnost, območje frekvenčnega uglaševanja in fazni šum. Pogosto se te tri lastnosti medsebojno izključujejo. Sistemi za merjenje časa tako na primer zahtevajo izjemno točnost frekvence. Frekvenca takega oscilatorja je fiksna in se med delovanjem ne sme spreminjati. Dolgoročna stabilnost je v tem primeru zelo dobra, nizkega faznega šuma pa ni mogoče doseči brez dodatnih nizkošumnih oscilatorjev. Lokalni oscilatorji so pogosto napetostno krmiljeni. V tem primeru je pomembno, da je oscilatorju mogoče spreminjati frekvenco v določenem območju. Nizek fazni šum je zaželen, vendar pa ni izvedljiv zaradi slabših lastnosti resonatorjev (v primerjavi z oscilatorji s fiksno frekvenco). V nekaterih aplikacijah, kot je recimo radar ali merilna tehnika, je pomemben nizek fazni šum. Ta pove, kako ozka in kakšne oblike je spektralna črta signala, ki ga generira oscilator. Tip oscilatorja, pri katerem je v ospredju fazni šum, je predmet te disertacije. Fazni šum se podaja z enotami dBc/Hz. Pri nekem odmiku od nosilca se poda razmerje med močjo šuma in močjo nosilca. Fazni šum je odvisen predvsem od kvalitete resonatorja. Nanj močno vpliva tudi 1/f šum. Ta dva parametra vplivata predvsem na obliko faznega šuma oziroma na fazni šum v bližnjem območju frekvence nihanja oscilatorja. Na absolutno raven vpliva termični šum. Na področju mikrovalovnih oscilatorjev s fiksno frekvenco in nizkim faznim šumom je danes razvitih nekaj konceptov, ki dosegajo izjemne rezultate. Pri nizkošumnih oscilatorjih se v X-frekvenčnem območju pojavljajo različni resonatorji, kot je na primer votlinski ali pa optični resonator. Uporaba votlinskega resonatorja z neobremenjeno kvaliteto 80·103 tako omogoča realizacijo generiranje signala s faznim šumom -75 dBc/Hz pri odmiku 10 Hz. Fazni šum oscilatorja z votlinskim resonatorjem, ki ima v svoji notranjosti nameščen safirjev kristal, vse skupaj pa je ohlajeno na 6 K, dosega fazni šum -125 dBc/Hz pri odmiku 10 Hz od nosilca. Uporaba generatorja optičnega glavnikastega spektra omogoča pri 10 Hz odmika fazni šum -130 dBc/Hz. Vsi trije rezultati so vrhunski in zahtevajo uporabo kompleksnih rešitev in specializiranih komponent. Leta 1995 je bil predstavljen oscilator, ki kot resonator uporablja optično zakasnilno linijo. Optično vlakno zaradi majhnega slabljenja omogoča realizacijo dolgih zakasnilnih časov in s tem visokih kvalitet. Tak oscilator ne potrebuje posebnega resonatorja, nivo faznega šuma pa se določa z dolžino optičnega vlakna. Pomembna prednost tako imenovanega optoelektronskega oscilatorja je tudi neodvisnost faznega šuma od frekvence nihanja. V X-frekvenčnem območju je mogoče doseči fazni šum -70 dBc/Hz pri odmiku 10 Hz od nosilca. Na fazni šum optoelektronskega oscilatorja poleg kvalitete zakasnilne linije vplivata tudi zrnati šum fotodiode in relativni intenzitetni šum laserja. Problem optoelektronskega oscilatorja sta večrodovno nihanje in odvisnost frekvence od temperature. Rešitve, ki zmanjšujejo problem večrodovnega nihanja, so tehnike, kot je vključitev dodatne optične zakasnilne linije ali uporaba tehnike vklenitve na vsiljen signal. Problem temperaturne odvisnosti frekvence se lahko rešuje s temperaturno stabilizacijo ali dodatnim merilnim signalom. Problem rešitev, ki se za omenjena problema pojavljajo v literaturi, je recimo povečanje števila komponent oscilatorja ali pa uporaba posebnih gradnikov. V ta namen so bile v okviru te doktorske disertacije razvite tri metode, ki poenostavijo stabilizacijo s stališča dostopnosti gradnikov. Za stabilizacijo frekvence je bila razvita metoda s povratno krmilno zanko. V tem primeru se frekvenca optoelektronskega oscilatorja meri s pomočjo frekvenčnega diskriminatorja, nato pa se na podlagi informacije o frekvenci spreminja valovna dolžina laserja in s tem posredno lomni količnik vlakna. Tako je mogoče kompenzirati frekvenčne spremembe oscilatorja. Stabilnost frekvence z omenjeno metodo je 0,05 ppm/K. Za reševanje problema večrodovnega nihanja sta bili razviti dve metodi. Prva povečuje slabljenje stranskih rodov s pomočjo dodatne modulacije zanke. Gre za to, da se s pomočjo frekvenčnega mešalnika izlušči samo stranski rod nihanja oscilatorja, s tem pa se nato fazno modulira osnovna zanka oscilatorja. Tako je bilo povečano slabljenje stranskih rodov za 5 dB. Druga metoda vključuje uporabo množilnika kvalitete. To je pozitivna povratna vezava pasovno prepustnega sita. Sito skupaj z množilnikom kvalitete izkazuje manjšo pasovno širino kot samo sito brez množilnika kvalitete. Slabljenje stranskih rodov se v tem primeru poveča za 20 dB, poveča pa se tudi fazni šum (4 dB pri odmiku 1 kHz). Jedro disertacije so štirje mednarodno objavljeni članki, od katerih trije predstavljajo omenjene metode, eden pa je pregledni članek, ki je bil objavljen kot vabljeno predavanje. V disertaciji so objavljeni tudi trije patenti, ki pripadajo posamični novi metodi za stabilizacijo optoelektronskega oscilatorja.

Language:Slovenian
Keywords:optoelektronski oscilator, fazni šum, stabilnost, povratna zanka, barvna disperzija, množilnik kvalitete, stranski rod, frekvenčni diskriminator, fazna modulacija
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2016
PID:20.500.12556/RUL-87058 This link opens in a new window
COBISS.SI-ID:11647572 This link opens in a new window
Publication date in RUL:17.11.2016
Views:3684
Downloads:614
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:DESIGN AND IMPLEMENTATION OF A HIGHLY-STABLE OPTOELECTRONIC OSCILATOR
Abstract:
Microwave oscillators are nowadays an essential part of measurement equipment and telecommunication systems. They are notable for properties such as long-term stability, tuning range and phase noise. Often, the oscillator’s performance is focused on just one of these properties. For example, time-measuring systems demand a very accurate frequency. The frequency of such an oscillator is fixed and cannot change during the operation of the oscillator. In this case, the long-term stability is very good, but not so the phase noise. However, the latter can be improved by employing additional oscillators. Local oscillators are often voltage controlled, and so the frequency-tuning range is important in this case. A low phase noise is preferred, but is limited because of the lower quality factor of the resonator compared to an oscillator with a fixed frequency. In some applications, such as radar or measuring equipment, the phase noise is the most important parameter. The phase noise describes the width and the shape of the oscillator signal’s spectral line. The oscillator, for which the phase noise is the most important parameter, is the subject of this dissertation. The units for the phase noise are dBc/Hz (decibels below carrier per hertz). The ratio between the signal’s power and the noise at a specified frequency offset from the oscillator’s frequency contains the information about the phase noise. The latter depends mostly on the resonator’s quality factor. The 1/f noise also affects the phase-noise performance. These two parameters have an influence on the phase noise close to the carrier frequency. At larger frequency offsets, the thermal noise dominates. A couple of concepts are developed for microwave oscillators with a fixed frequency and an extremely low phase noise. Different types of resonators can be used, such as a cavity resonator or an optical resonator. A phase noise of -75 dBc/Hz at a frequency offset of 10 Hz can be achieved with a cavity resonator having an unloaded quality factor of 80·103 in the X-band. An X-band oscillator with a cavity resonator that is loaded with a sapphire crystal and cooled down to 6 K achieves a phase noise of -125 dBc/Hz at a 10-Hz offset. With an optical frequency comb, a phase noise of -130 dBc/Hz at a 10-Hz offset is possible to achieve in the X-band. All these results are state of the art and are achieved with complex systems and specialized building blocks. An oscillator that uses an optical delay line as a resonator was presented in 1995. An optical fiber enables the realization of a large delay time and thus a high quality factor. An oscillator of this type does not require a special resonator. The phase-noise level is determined with the length of the optical fiber in the delay line. An important advantage of the so-called opto-electronic oscillator is that the phase noise is independent of the oscillator’s frequency. A phase noise of -70 dBc/Hz at a 10-Hz offset can be achieved with this type of oscillator in the X-band. The photodiode’s shot noise and the laser’s relative intensity noise also have an effect on the phase noise of an opto-electronic oscillator. Multimode oscillation and temperature-dependent frequency drift are some of the problems with an opto-electronic oscillator. Solutions, such as additional optical loops and injection locking, were proposed to suppress the side modes in the spectrum of the opto-electronic oscillator. Any frequency drift can be minimized with temperature stabilization or additional measurement signals. The main problems with solutions presented in literature are, for example, to increase the number of components or the use of highly specialized building blocks. To simplify the structure of an opto-electronic oscillator and to maintain good stability, three methods were developed, which are presented in this dissertation. To stabilize the frequency a method with a feedback control loop was developed. The achieved frequency drift was 0.05 ppm/K. The method works in such a way that the frequency is measured with a frequency discriminator and made constant with the laser’s changing wavelength. The wavelength of the light has an effect on the delay time because of the refractive index and thus also an effect on the oscillator’s frequency. To eliminate the side modes, two methods were developed. One method increases the side-mode suppression with an additional phase modulation of the oscillator’s loop. With a frequency mixer a side mode is extracted from the oscillator’s spectrum. The phase of the oscillator’s loop is then modulated with the extracted signal. A 5-dB increase in the suppression ratio was achieved with this method. The second method includes a quality multiplier, which is a positive feedback, added to a band-pass filter in the oscillator’s loop. The filter’s bandwidth is decreased with this technique, which increases the suppression ratio by 20 dB, according to the measurements presented in this dissertation. Unfortunately, this technique increases the phase noise by 4 dB at a 1-kHz offset. The dissertation’s core is four internationally published scientific papers. Three of them present three methods developed during the research work and are already mentioned in previous paragraphs. One paper is a state-of-the-art review, and was published as an invited paper at a conference. Besides the scientific papers, three patents (one for each of the developed methods) are also presented in this dissertation.

Keywords:opto-electronic oscillator, phase noise, stability, feedback loop, chromatic dispersion, quality multiplier, side mode, frequency discriminator, phase modulation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back