izpis_h1_title_alt

Razvrščanje z uporabo uteženega ansambla
ID ILC, NEJC (Author), ID Dobnikar, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,93 MB)
MD5: 89BB8BD17B64931E0E0015A8D2B34E4F
PID: 20.500.12556/rul/86f984fe-eb38-407f-be5c-baf6044e123a

Abstract
Razvrščanje podatkov v gruče je slabo pogojeni problem in dokazano je, da algoritem, ki bi izpolnjeval vse predpostavke dobrega razvrščanja, ne obstaja. To je glavni razlog za obstoj velikega števila algoritmov za razvrščanje, ki temeljijo na raznovrstnih teoretičnih osnovah – med njimi je tudi znan algoritem Kohonenove samo-organizirajoče mreže (SOM). Na žalost nam naučena mreža SOM ne ponudi eksplicitno izražene strukture gruč v podatkih, zato navadno posegamo uporabimo dodaten korak, na katerem združujemo posamezne enote mreže v gruče. V disertaciji predstavljamo doprinos k dvonivojskemu razvrščanju z mrežo SOM, pri čemer uporabljamo principe zakona gravitacije. Predlagan algoritem za gravitacijsko razvrščanje samo-organizirajoče mreže (gSOM) je sposoben odkriti gruče zapletene in ne zgolj hipersferične oblike. Poleg tega algoritem gSOM sam določi število gruč v podatkih. Opravili smo primerjavo z nekaterimi drugimi tehnikami razvrščanja na umetnih in realnih podatkih. Izkaže se, da gSOM doseže obetavne rezultate, še posebej na podatkih o izraženosti genov. Algoritem, ki bi znal rešiti vse probleme razvrščanja ne obstaja, zato je koristno analizirati podatke skozi večkratno razvrščanje. Pri tem nastane množica razvrstitev in tvorijo ansambel razvrstitev. Metode ansamblov za razvrščanje so se pojavile nedavno kot učinkovit pristop k stabilizaciji in izboljšanju delovanja enostavnih algoritmov za razvrščanje. Razvrščanje z ansambli je v osnovi sestavljeno iz dveh korakov: gradnja ansambla razvrstitev z enostavnimi metodami in združevanje dobljenih rešitev v sporazumno razvrstitev podatkov. Da bi olajšali korak združevanja v sporazum, je bil predlagan postopek uteževanja razvrstitev v ansamblu, ki skuša ovrednotiti pomembnost posameznih članov ansambla. Eden od načinov za analizo pomembnosti razvrstitev (PRA) je uporaba notranjih kazalcev veljavnosti razvrstitev. Na tem področju smo napravili dva prispevka: najprej predlagamo nov notranji ocenjevalni kazalec, imenovan DNs, ki razširja Dunnov kazalec in je osnovan na iskanju najkrajših poti v Gabrielovem grafu nad podatki; drugi prispevek je povezan z nadgradnjo obstoječega pristopa uteženega ansambla z dodatnim korakom redukcije, ki sledi koraku ocenjevanja razvrstitev v ansamblu. Razvit postopek analize pomembnosti razvrstitev z redukcijo (PRAr) se obnese zadovoljivo, ko ga vključimo v tri funkcije za iskanje sporazumne razvrstitve, pri čemer vse funkcije temeljijo na principu kopičenja dokazov. V disertaciji se dotikamo vseh glavnih področij razvrščanja podatkov: ustvarjanje podatkov, analiza podatkov z enostavnimi algoritmi za razvrščanje, ocenjevanje razvrstitev z notranjimi in zunanjimi kazalci veljavnosti ter razvrščanje z ansambli s poudarkom na uteženih različicah. Vse predlagane doprinose smo primerjali s trenutno aktualnimi metodami na podatkih iz različnih problemskih domen. Rezultati kažejo na uporabnost predlaganih metod v kontekstu strojnega učenja.

Language:English
Keywords:Ključne besede: razvrščanje v gruče, nenadzorovano učenje, metode uteženega ansambla, ocenjevanje razvrstitev, generator umetnih podatkov
Work type:Doctoral dissertation
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-86761 This link opens in a new window
COBISS.SI-ID:1537246403 This link opens in a new window
Publication date in RUL:26.10.2016
Views:1941
Downloads:905
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Clustering based on weighted ensemble
Abstract:
The clustering is an ill-posed problem and it has been proven that there is no algorithm that would satisfy all the assumptions about good clustering. This is why numerous clustering algorithms exist, based on various theories and approaches, one of them being the well-known Kohonen’s self-organizing map (SOM). Unfortunately, after training the SOM there is no explicitly obtained information about clusters in the underlying data, so another technique for grouping SOM units has to be applied afterwards. In the thesis, a contribution towards a two-level clustering of the SOM is presented, employing principles of Gravitational Law. The proposed algorithm for gravitational clustering of the SOM (gSOM) is capable of discovering complex cluster shapes, not only limited to the spherical ones, and is able to automatically determine the number of clusters. Experimental comparison with other clustering techniques is conducted on synthetic and real-world data. We show that gSOM achieves promising results especially on gene-expression data. As there is no clustering algorithm that can solve all the problems, it turns out as very beneficial to analyse the data using multiple partitions of them – an ensemble of partitions. Cluster-ensemble methods have emerged recently as an effective approach to stabilize and boost the performance of the single-clustering algorithms. Basically, data clustering with an ensemble involves two steps: generation of the ensemble with single-clustering methods and the combination of the obtained solutions to produce a final consensus partition of the data. To alleviate the consensus step the weighted cluster ensemble was proposed that tries to assess the relevance of ensemble members. One way to achieve this is to employ internal cluster validity indices to perform partition relevance analysis (PRA). Our contribution here is two-fold: first, we propose a novel cluster validity index DNs that extends the Dunn’s index and is based on the shortest paths between the data points considering the Gabriel graph on the data; second, we propose an enhancement to the weighted cluster ensemble approach by introducing the reduction step after the assessment of the ensemble partitions is done. The developed partition relevance analysis with the reduction step (PRAr) yields promising results when plugged in the three consensus functions, based on the evidence accumulation principle. In the thesis we address all the major stages of data clustering: data generation, data analysis using single-clustering algorithms, cluster validity using internal end external indices, and finally the cluster ensemble approach with the focus on the weighted variants. All the contributions are compared to the state-of-art methods using datasets from various problem domains. Results are positive and encourage the inclusion of the proposed algorithms in the machine-learning practitioner’s toolbox.

Keywords:Key words: cluster analysis, unsupervised learning, weighted cluster ensemble, clustervalidation, synthetic data generation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back