izpis_h1_title_alt

Primerjava atributov za napovedovanje ocen v spletni trgovini Amazon
ID Temelkovska, Angelina (Author), ID Šubelj, Lovro (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (7,04 MB)
MD5: CFAAEA720C07FF830DBF6B06C38E73F3
PID: 20.500.12556/rul/332ac1d8-85fa-44f1-b5ca-8a4a7f41b5dd

Abstract
Vsak dan komentiramo ali ocenjujemo stvari, ki nas obkrožajo in s katerimi se ukvarjamo, pri tem pa za seboj puščamo sledi. Cilj diplomske naloge je prikazati, kako napovedovati ocene v dandanes največji spletni trgovini Amazon. V ta namen smo zgradili modele v treh različnih fazah, in sicer iz treh različnih vendar povezanih področij analize podatkov. Na začetku so prikazani matematični in statistični modeli, ki jih bomo uporabili za dosego cilja, in kratek pregled vsakega področja. Preko modelov bomo pokazali, kateri od atributov spletnih ocen in mnenj nam ponujajo največ informacij za številčno oceno. Posamezni pristopi omogočajo pridobivanje različnih lastnosti, kot so časovni atribut, koristnost, besede v komentarjih in interakcija med uporabniki. V vsaki fazi nato preiskujemo dobljene lastnosti preko primerjanj različnih kombinacij morebitnih lastnosti. V nadaljevanju njihovo uspešnost ocenjujemo preko napovedovanja ocen. V zaključku so predstavljene prednosti in slabosti zgrajenih modelov ter navedene možnosti za izboljšave in nadaljno delo v prihodnosti.

Language:Slovenian
Keywords:strojno učenje, podatkovno rudarjenje, rudarjenje besedil, analiza omrežij, filmi, ocene, komentarji, uporabniki
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-86347 This link opens in a new window
Publication date in RUL:07.10.2016
Views:1963
Downloads:390
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison of attributes for predicting online reviews on Amazon
Abstract:
On every day basis, we grade and make comments about many subjects around us. This thesis is aiming to show how can we predict the grades on the largest online retailer nowadays Amazon. For that purpose, we built models in three different phases, by three different but also closely connected fields in the data analysis branch. At the beginning, we give a short overview of each field and basic mathematical description of the models and estimators we use. Via those models, we show the big picture of which review's attributes give us the most information about user's numerical score. Each of the three approaches extracts various attributes such as the time stamp, the helpfulness, the words in the comments or the interaction between the users, to name a few. Furthermore, we explore those features by comparing different combinations of them at each of the three steps. Then, we evaluate their success in making a prediction of the numerical score in each review. At the end, we conclude with some of the advantages and disadvantages of the built models and possibilities for future improvements and further work.

Keywords:machine learning, data mining, text mining, network analysis, movies, scores, comments, users

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back