Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Reševanje linearnih diferencialnih enačb drugega reda s pomočjo potenčnih vrst
ID
Šenkinc, Polona
(
Author
),
ID
Slapar, Marko
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/3877/
PDF - Presentation file,
Download
(942,65 KB)
MD5: 412FC96DF56A22118E7089C8D1CDA819
Image galllery
Abstract
Homogene linearne diferencialne enačbe drugega reda so enačbe oblike P(x) y^''+Q(x) y^'+R(x)y=0, kjer je x neodvisna spremenljivka. Takih enačb v splošnem ne znamo reševati. Rešiti znamo le take s konstantnimi koeficienti. Homogene linearne diferencialne enačbe drugega reda, ki imajo za koeficiente predvsem analitične funkcije, pa lahko rešujemo s pomočjo potenčnih vrst. Na začetku je tako navedenih nekaj lastnosti potenčnih vrst, ki jih uporabimo kasneje pri reševanju. Glede na vrednost funkcije P(x) ločimo dve vrsti točk, okoli katerih rešujemo diferencialne enačbe, navadne in singularne točke. Primer enačbe s singularnimi točkami je Eulerjeva enačba x^2 y^''+αxy^'+βy=0, kjer sta α in β realni konstanti. Na primeru Eulerjeve enačbe vidimo, da lahko rešitev zapišemo v določeni obliki, glede na vrednosti ničel karakteristične enačbe F(r)=r(r-1)+αr+β=0. Tako ločimo primere, ko sta ničli realni in različni, realni in enaki ali pa sta konjugiran kompleksni par. Na koncu si ogledamo še Besslovo enačbo x^2 y^''+xy^'+(x^2-ν^2 )y=0, kjer je ν konstanta in njene rešitve reda nič.
Language:
Slovenian
Keywords:
homogene linearne diferencialne enačbe drugega reda
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
PEF - Faculty of Education
Year:
2016
PID:
20.500.12556/RUL-86095
COBISS.SI-ID:
11213897
Publication date in RUL:
19.09.2017
Views:
1905
Downloads:
325
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠENKINC, Polona, 2016,
Reševanje linearnih diferencialnih enačb drugega reda s pomočjo potenčnih vrst
[online]. Bachelor’s thesis. [Accessed 18 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=86095
Copy citation
Share:
Secondary language
Language:
English
Title:
Solving linear differential equations of second order using power series
Abstract:
Second-order linear homogeneous differential equations are mathematical equations of form P(x) y^''+Q(x) y^'+R(x)y=0 where x is an independent variable. In general, we can solve only equations with constant coefficients, and therefore cannot solve the equations in question. On the other hand, second-order linear homogeneous differential equations with coefficients in form of analytic functions can be solved with power series. In dissertation we discuss power series characteristics that we use for solving the equations in question. We can find a series solutions around two types of points, ordinary and singular points. Euler’s equation x^2 y^''+αxy^'+βy=0 is one of the examples where the equation has a singular point and α and β as real constants. When analysing Euler’s equation we find out that the form of the equations solution depends on zero value of characteristic equation (r)=r(r-1)+αr+β=0. There can be different or equal real zeroes or conjugated complex couple of zeroes. In the end, we analyse Bessel’s equation x^2 y^''+xy^'+(x^2-ν^2 )y=0 where ν is a constant with solutions of zero order.
Keywords:
second-order linear homogeneous differential equations
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back