izpis_h1_title_alt

Zagotavljanja prihodka v elektrodistribuciji z uporabo podatkov pametnih števcev
ID ROGINA, MIRO (Avtor), ID Bajec, Marko (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (3,47 MB)
MD5: 4C9289A64A9B73670A27443D45163B92
PID: 20.500.12556/rul/5bf6f8c8-2ce2-4939-aa36-a02475e9091a

Izvleček
S povečevanjem kompleksnosti storitev naraščata tudi kompleksnost in heterogenost sistemov, ki jih ponudniki uporabljajo za merjenje in obračunavanje storitev. To povečuje možnosti za napake in posledično za izpad prihodkov. V telekomunikacijskem sektorju, ki se trudi storitve prilagajati tako potrebam strank kot novim tehnološkim možnostim, je kompleksnost obračunavanja storitev največja. Prvi so zaznali potrebo, da se sistematično spopadejo z napakami, ki povzročajo izpad dela prihodkov. Oblikovali so celovito ogrodje postopkov, poimenovano 'preprečevanje odtekanja prihodkov'. Po sprostitvi trga z električno energijo kompleksnost storitev distribucije električne energije sledi kompleksnosti telekomunikacijskih storitev. K temu zelo prispeva uvajanje pametnih omrežij s sistemi naprednega merjenja in s pametnimi števci. Velika množica podatkov, ki pri tem nastaja, ponuja možnosti za nove storitve. V magistrski nalogi smo predstavili pristop k preprečevanju odtekanja prihodkov, tako da smo uporabili splošne postopke, pri tem pa upoštevali tudi posebnosti, ki veljajo za dejavnost distribucije električne energije. Posebno pozornost smo namenili vprašanju kakovosti podatkov. V praktičnem delu naloge smo se osredotočili na pridobivanje znanja iz podatkov, koristnih pri odkrivanju odtekanja prihodkov, še posebej iz podatkov, ki jih s sistemom naprednega merjenja zberemo s pametnih števcev. V podatkovnem skladišču smo te podatke združili s podatki iz obračunskega sistema in iz prostorskega informacijskega sistema. Ob izgradnji skladišča smo odkrili nekaj težav s kakovostjo podatkov, nanje opozorili in nakazali, kako jih odpraviti in kako vzpostaviti mehanizem za spremljanje morebitnih ponovnih pojavov anomalij. Pri magistrski nalogi smo se osredotočili na pridobitev informacij o značilnostih odjemalcev, nato pa to znanje uporabili pri iskanju morebitnih kraj električne energije. Primerjali smo metode strojnega učenja za razvrščanje dnevnih obremenitvenih diagramov odjemalcev v značilne skupine. Na podlagi analize rezultatov se je kot najboljša izkazala metoda maksimiranja pričakovanj. Hkrati smo določili najprimernejše število skupin z značilno dinamiko dnevne porabe. Po razvrstitvi vseh merilnih mest, za katera smo imeli na voljo izmerjene 15-minutne porabe, smo ugotavljali, katere lastnosti odjemalca najbolj sovpadajo z dinamiko njegove porabe. Ponovno smo preizkusili več metod strojnega učenja in ugotovili, da so za to nalogo najprimernejša odločitvena drevesa. Z uporabo pravil, ki smo jih odkrili, smo ocenili dnevne porabe za vsa preostala merilna mesta. S tako pripravljenimi podatki smo izdelali analitično strukturo, ki je odlična osnova za odkrivanje odtekanja prihodkov. Avtomatizirali smo celoten postopek polnjenja skladišča, odkrivanja in uporabe znanja ter obdelave analitične strukture. Z nekaj primeri aktualnih poročil smo dokazali koristnost tega početja.

Jezik:Slovenski jezik
Ključne besede:Preprečevanje odtekanja prihodkov, kakovost podatkov, napredni sistem merjenja (AMI), pametni števci, značilni dnevni obremenitveni diagram, podatkovno rudarjenje, razvrščanje v skupine, klasifikacija, odkrivanje kraje električne energije.
Vrsta gradiva:Magistrsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2016
PID:20.500.12556/RUL-85787 Povezava se odpre v novem oknu
Datum objave v RUL:24.09.2016
Število ogledov:2429
Število prenosov:658
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Revenue assurance in electrodistribution using smart meters data
Izvleček:
The increasing complexity of services also encourages the complexity and heterogeneity of the systems that providers use for measuring and billing these services. The complexity may result in the occurrence of errors and consequently in a revenue leakage. For the telecom industry that strives to adapt their services not only to the needs of customers but also to new technological opportunities the biggest complexity issue is billing the services. They were the first to recognize the need to develop a systematic way to grapple the problem of errors that cause the revenue leakage. The sector prepared a comprehensive framework of procedures called "revenue assurance". With the liberalization of the electricity market, the services of electricity distribution became as complicated as the telecommunications services. This further significantly enhanced the deployment of smart grids, advanced metering infrastructures and smart meters that, with the abundance of data, give opportunities for new services. This master thesis presents the approach we took to grapple with the revenue assurance. We used general procedures and took into consideration the peculiarities of the electricity distribution domain as well. Particular attention was given to data quality issue. In the practical part of the thesis, we focused on acquiring knowledge from the data that would benefit us in detecting the revenue leakage, from the smart meters’ data collected by advanced metering infrastructure in particular. In the data warehouse, the data was combined with the billing system data and the geographic information system data. While building the data warehouse, we encountered some problems with data quality. After we had pointed out the problems, we indicated how to eliminate them and how to establish a mechanism for monitoring any possible recurrences of errors. The thesis focused on collecting information on the characteristics of consumers. Once we acquired this knowledge, we used it to look for any thefts of electricity. We made a comparison of machine learning methods for the classification of daily load curves of consumers into typical groups. Based on the analysis of the results obtained, we selected the best method, i.e. the expectation maximization method. At the same time, we determined the best number of clusters with the typical dynamics of daily consumption. Once all measuring points with the 15-minute consumption data were classified, we were determining the characteristics of a consumer that coincide the most with the dynamics of his electricity consumption. Again, we tested several machine learning methods and established that decision trees are the most appropriate tool for this task. With established behavior, we estimated daily consumption for all other measuring points. Thus prepared data were used to develop an analytical structure that proves to be an excellent base for discovering the revenue leakage. We automated the entire process of filling the warehouse, finding and applying knowledge and, last but not least, processing the analytical structure. We demonstrated the usefulness of this practice with a few examples of actual reports.

Ključne besede:revenue assurance, data quality, advance metering system, smart meters, load profiles, data mining, clustering, classification, electricity theft detection

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj