izpis_h1_title_alt

Avtomatska transkripcija zvočnih posnetkov tolkal
ID Pešič, Miha (Author), ID Marolt, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,21 MB)
MD5: 11371EC86C3550C1E630F94E52F752F3
PID: 20.500.12556/rul/ecbedd93-a0ba-4369-8475-d387cc7c7b45

Abstract
Detekcija in transkripcija udarcev bobnov iz zvočnih datotek je problem, ki trenutno še nima optimalne rešitve. Poznamo več različnih metod, ki dajejo zadovoljive rezultate, vendar je popolno transkripcijo zelo težko doseči zaradi pomanjkanja informacij v zvočnem zapisu. Pristop z nenegativno matrično faktorizacijo predpostavlja, da imamo na voljo izolirane posnetke posameznega bobna, ki ga želimo zaznati. S kratkočasovno Fourierjevo transformacijo dobimo ločene transformacije za vsak časovni trenutek. Spektrograme posameznih bobnov uporabimo za nenegativno matrično faktorizacijo, rezultat tega postopka pa nam omogoča zaznavanje začetkov udarcev ter ponovno sintezo signalov. Razvit je bil sistem za transkripcijo treh različnih bobnov. Sistem smo na dva različna načina preizkusili na testni množici in primerjali rezultate.

Language:Slovenian
Keywords:bobni, transkripcija, nenegativna matrična faktorizacija
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-84964 This link opens in a new window
Publication date in RUL:08.09.2016
Views:1976
Downloads:522
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic transcription of drum recordings
Abstract:
Detection and transcription of drum hits from audio files is a problem, currently without an optimal solution. Multiple methods give satisfactory results but perfect transcription is hard to achieve because of lack of information in the digital recording. Approach using non-negative matrix factorization assumes that we have access to isolated recordings of every drum sound we wish to detect. Short-term Fourier transform yields separate transformations for each time frame. Isolated drum spectrograms are used for non-negative matrix factorization, the result of which we can then use for onset detection and signal synthesis. A transcription system for three different drum sounds was implemented. We tested the system in two separate scenarios and compared the results.

Keywords:drums, transcription, non-negative matrix factorization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back