Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Nadzor galerij
ID
Cof, Sandi
(
Author
),
ID
Cencelj, Matija
(
Mentor
)
More about this mentor...
,
ID
Gabrovšek, Boštjan
(
Comentor
)
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/3661/
Image galllery
Abstract
Obravnavamo osnovni problem varovanja galerij, katerih tlorisi so enostavni poligoni z n oglišči, varnostnike pa postavljamo v oglišča. Preko primera poligona z n oglišči pokažemo, da obstaja poligon, ki za nadzor potrebuje floor(n / 3) varnostnikov. S triangulacijo poligona in 3-barvanjem podamo algoritem, ki nam najde postavitev varnostnikov pri kateri floor(n / 3) varnostnikov zadosti za nadzor celotne galerije. Obravnavamo tudi delitev poligona na y-monotone dele in njihovo triangulacijo. Delovanje algoritmov ponazorimo na primerih.
Language:
Slovenian
Keywords:
problem galerije
Work type:
Undergraduate thesis
Typology:
2.11 - Undergraduate Thesis
Organization:
PEF - Faculty of Education
Year:
2016
PID:
20.500.12556/RUL-84830
COBISS.SI-ID:
11134793
Publication date in RUL:
09.09.2016
Views:
1678
Downloads:
265
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Guarding art galleries
Abstract:
We present the classical art gallery problem where the floor is a simple polygon with n vertices and we guard it by vertex guards. With an example which needs floor(n / 3) vertex guards, we proof that floor(n / 3) vertex guards might be necessary. By a triangulation of polygon and 3-coloring we give an algorithm which finds a placement for vertex guards where floor(n / 3) guards are sufficient to cover the entire polygon. We continue with presenting a division of the polygon into y-monotone pieces which we further triangulate. We simulate algoritms on examples.
Keywords:
art gallery problem
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back