Details

Detekcija uhljev s konvolucijskimi nevronskimi mrežami
ID GABRIEL, LUKA LAN (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,45 MB)
MD5: A04A70326C2EAADE1CEE75421632FC9A
PID: 20.500.12556/rul/eb513c13-b7d8-476b-ac68-22866f0913dc

Abstract
Zaznavanje objektov na slikah je še zmeraj zahteven problem na področju računalniškega vida. Zaznavanje uhljev je v zadnjih letih postala popularna aplikacija zaznavanja objektov, z vedno večjim zanimanjem za identifikacijo ljudi glede na biometrijo uhlja. Kolikor vemo, se je problem zaznavanja uhljev do zdaj reševal s kombinacijami zaznavanja kože, zaznavanja robov, histogramov in algoritmi ujemanja predloge. V tem delu predstavimo metodo za detekcijo uhljev brez ujemanja predloge, z uporabo konvolucijske nevronske mreže, ki opravlja segmentacijo. S to metodo, ki je invariantna na kot, pod katerim je slika zajeta, obliko uhlja, barvo kože, osvetljitev, delno prekrivanje in dodatke na uhljih, smo uspeli natančno zaznati območje slike, kjer se uhelj nahaja. Nadalje, čas, potreben za zaznavo, se je zelo izboljšal v primerjavi z ostalimi metodami za reševanje enakega problema. Predvidevamo, da bo naša metoda uporabljena v orodju Annotated Web Ears Toolbox.

Language:English
Keywords:računalniški vid, segmentacija, konvolucijske nevronske mreže, detekcija uhljev
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-84351 This link opens in a new window
Publication date in RUL:16.08.2016
Views:3461
Downloads:376
Metadata:XML DC-XML DC-RDF
:
GABRIEL, LUKA LAN, 2016, Detekcija uhljev s konvolucijskimi nevronskimi mrežami [online]. Bachelor’s thesis. [Accessed 29 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=84351
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Ear detection with convolutional neural networks
Abstract:
Object detection is still considered a difficult task in the field of computer vision. Specifically, earlobe detection has become a popular application as the interest in human identification using earlobe biometry has increased. So far earlobe detection problem has been solved using a combination of skin detection, edge detection, segmentation by fusion of histogram-based k-means, and template matching algorithms. In this work we present a method of earlobe detection without template matching by using a convolutional neural network, performing image segmentation. With this method, which is invariant to angle at which the photo was taken, earlobe shape, skin color, illumination, occlusions, and earlobe accessories, we were able to accurately detect the area of the image, where an earlobe is present. Moreover, detection time was significantly improved when compared to other methods for solving the same task. We expect our method to be used in Annotated Web Ears Toolbox.

Keywords:computer vision, segmentation, convolutional neural networks, earlobe detection

Similar documents

Similar works from RUL:
  1. ǂThe ǂimportance of cancer stem cells and epithelial-mesenchymal transition in the progression of non-small cell lung cancer
  2. Gene expression levels of the prolyl hydroxylase domain proteins PHD1 and PHD2 but not PHD3 are decreased in primary tumours and correlate with poor prognosis of patients with surgically resected non-small-cell lung cancer
  3. Study of phosphatidylethanolamine N-methyltransferase gene expression in non-small cell lung cancer tissue
  4. Usefulness of immunohistochemically determined epidermal growth factor receptor mutations in lung cancer
  5. Diabetes mellitus and physical activity
Similar works from other Slovenian collections:
  1. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer
  2. Outsourcing predictive biomarker testing in non-small cell carcinoma
  3. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer
  4. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer
  5. NSCLC molecular testing in Central and Eastern European countries

Back