Details

Detekcija uhljev s konvolucijskimi nevronskimi mrežami
ID GABRIEL, LUKA LAN (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,45 MB)
MD5: A04A70326C2EAADE1CEE75421632FC9A
PID: 20.500.12556/rul/eb513c13-b7d8-476b-ac68-22866f0913dc

Abstract
Zaznavanje objektov na slikah je še zmeraj zahteven problem na področju računalniškega vida. Zaznavanje uhljev je v zadnjih letih postala popularna aplikacija zaznavanja objektov, z vedno večjim zanimanjem za identifikacijo ljudi glede na biometrijo uhlja. Kolikor vemo, se je problem zaznavanja uhljev do zdaj reševal s kombinacijami zaznavanja kože, zaznavanja robov, histogramov in algoritmi ujemanja predloge. V tem delu predstavimo metodo za detekcijo uhljev brez ujemanja predloge, z uporabo konvolucijske nevronske mreže, ki opravlja segmentacijo. S to metodo, ki je invariantna na kot, pod katerim je slika zajeta, obliko uhlja, barvo kože, osvetljitev, delno prekrivanje in dodatke na uhljih, smo uspeli natančno zaznati območje slike, kjer se uhelj nahaja. Nadalje, čas, potreben za zaznavo, se je zelo izboljšal v primerjavi z ostalimi metodami za reševanje enakega problema. Predvidevamo, da bo naša metoda uporabljena v orodju Annotated Web Ears Toolbox.

Language:English
Keywords:računalniški vid, segmentacija, konvolucijske nevronske mreže, detekcija uhljev
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-84351 This link opens in a new window
Publication date in RUL:16.08.2016
Views:3781
Downloads:379
Metadata:XML DC-XML DC-RDF
:
GABRIEL, LUKA LAN, 2016, Detekcija uhljev s konvolucijskimi nevronskimi mrežami [online]. Bachelor’s thesis. [Accessed 18 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=84351
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Ear detection with convolutional neural networks
Abstract:
Object detection is still considered a difficult task in the field of computer vision. Specifically, earlobe detection has become a popular application as the interest in human identification using earlobe biometry has increased. So far earlobe detection problem has been solved using a combination of skin detection, edge detection, segmentation by fusion of histogram-based k-means, and template matching algorithms. In this work we present a method of earlobe detection without template matching by using a convolutional neural network, performing image segmentation. With this method, which is invariant to angle at which the photo was taken, earlobe shape, skin color, illumination, occlusions, and earlobe accessories, we were able to accurately detect the area of the image, where an earlobe is present. Moreover, detection time was significantly improved when compared to other methods for solving the same task. We expect our method to be used in Annotated Web Ears Toolbox.

Keywords:computer vision, segmentation, convolutional neural networks, earlobe detection

Similar documents

Similar works from RUL:
  1. Visokotemperaturna oksidacija orodnega jekla SITHERM S140R
  2. Termodinamični model visoko temperaturne oksidacije orodnih jekel za delo v vročem
  3. Karakterizacija jekla UTOPMo5
  4. Optimizacija sferoidizacijskega žarjenja orodnega jekla za delo v vročem RAVNEX HD
  5. Vpliv tehnologije laserskega varjenja in toplotne obdelave na mehanske lastnosti poboljšanega orodnega jekla za delo v vročem
Similar works from other Slovenian collections:
  1. Obrabna odpornost orodnega jekla za delo v vročem
  2. Vpliv toplotne obdelave na lastnosti orodnih jekel
  3. Obrabna odpornost orodnega jekla za delo v vročem AISI H11 pri suhem drsnem kontaktu
  4. Potencial podhlajevanja za izboljšanje mehanskih lastnosti orodnih jekel
  5. Effect of heat treatment on thermal conductivity of additively manufactured AISI H13 tool steel

Back