Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
ID
GABRIEL, LUKA LAN
(
Author
),
ID
Peer, Peter
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(4,45 MB)
MD5: A04A70326C2EAADE1CEE75421632FC9A
PID:
20.500.12556/rul/eb513c13-b7d8-476b-ac68-22866f0913dc
Image galllery
Abstract
Zaznavanje objektov na slikah je še zmeraj zahteven problem na področju računalniškega vida. Zaznavanje uhljev je v zadnjih letih postala popularna aplikacija zaznavanja objektov, z vedno večjim zanimanjem za identifikacijo ljudi glede na biometrijo uhlja. Kolikor vemo, se je problem zaznavanja uhljev do zdaj reševal s kombinacijami zaznavanja kože, zaznavanja robov, histogramov in algoritmi ujemanja predloge. V tem delu predstavimo metodo za detekcijo uhljev brez ujemanja predloge, z uporabo konvolucijske nevronske mreže, ki opravlja segmentacijo. S to metodo, ki je invariantna na kot, pod katerim je slika zajeta, obliko uhlja, barvo kože, osvetljitev, delno prekrivanje in dodatke na uhljih, smo uspeli natančno zaznati območje slike, kjer se uhelj nahaja. Nadalje, čas, potreben za zaznavo, se je zelo izboljšal v primerjavi z ostalimi metodami za reševanje enakega problema. Predvidevamo, da bo naša metoda uporabljena v orodju Annotated Web Ears Toolbox.
Language:
English
Keywords:
računalniški vid
,
segmentacija
,
konvolucijske nevronske mreže
,
detekcija uhljev
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-84351
Publication date in RUL:
16.08.2016
Views:
3547
Downloads:
376
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GABRIEL, LUKA LAN, 2016,
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
[online]. Bachelor’s thesis. [Accessed 31 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=84351
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Ear detection with convolutional neural networks
Abstract:
Object detection is still considered a difficult task in the field of computer vision. Specifically, earlobe detection has become a popular application as the interest in human identification using earlobe biometry has increased. So far earlobe detection problem has been solved using a combination of skin detection, edge detection, segmentation by fusion of histogram-based k-means, and template matching algorithms. In this work we present a method of earlobe detection without template matching by using a convolutional neural network, performing image segmentation. With this method, which is invariant to angle at which the photo was taken, earlobe shape, skin color, illumination, occlusions, and earlobe accessories, we were able to accurately detect the area of the image, where an earlobe is present. Moreover, detection time was significantly improved when compared to other methods for solving the same task. We expect our method to be used in Annotated Web Ears Toolbox.
Keywords:
computer vision
,
segmentation
,
convolutional neural networks
,
earlobe detection
Similar documents
Similar works from RUL:
Vpliv izražanja receptorja za inzulinu podoben rastni dejavnik 1 (IGF1R) na preživetje pri razsejanem nedrobnoceličnem raku pljuč
Metastatic EMT phenotype is governed by microRNA-200-mediated competing endogenous RNA networks
Vloga cisteinskih katepsinov B in X in njunih inhibitorjev pri epitelno-mezenhimskem prehodu tumorskih celic
Izolacija in karakterizacija tumorskih matičnih celic iz celičnih linij raka dojke in ovrednotenje izražanja katepsinov B in X v njih
Določanje prisotnosti krožečih tumorskih celic v periferni krvi bolnikov po RO-resekciji raka debelega črevesa in danke
Similar works from other Slovenian collections:
Influence of kinematic factors of friction stir welding on the characteristics of welded joints of forged plates made of EN AW 7049 A aluminium alloy
LCF behaviour of high strength aluminium alloys AA 6110A and AA 6086
Microstructure, mechanical properties and fatigue behaviour of a new high-strength aluminium alloy AA 6086
Določitev lomnomehanskih lastnosti zvara na aluminijevi zlitini 7049A
Back