Details

Biofizikalno-kemijske lastnosti človeškega rekombinatnega perforina in njegove interakcije z lipidnimi membranami : doktorsko delo
ID Naneh, Omar (Author), ID Anderluh, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (15,15 MB)
MD5: 84B1D0FB94755FD4CCD9F58993CC2BE7
PID: 20.500.12556/rul/52640514-a2aa-4c36-9093-d7870830de4e

Language:Slovenian
Keywords:biokemija, citotoksični proteini ki tvorijo pore, rekombinantni proteini, umetne membrane, genetske tehnike, tehnike analitične kemije
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:MF - Faculty of Medicine
Place of publishing:Ljubljana
Publisher:[O. Naneh]
Year:2016
Number of pages:XVI, 155 f.
PID:20.500.12556/RUL-84245 This link opens in a new window
UDC:612.017:612.398(043.3)
COBISS.SI-ID:284728832 This link opens in a new window
Publication date in RUL:21.07.2016
Views:3069
Downloads:501
Metadata:XML DC-XML DC-RDF
:
NANEH, Omar, 2016, Biofizikalno-kemijske lastnosti človeškega rekombinatnega perforina in njegove interakcije z lipidnimi membranami : doktorsko delo [online]. Doctoral dissertation. Ljubljana : O. Naneh. [Accessed 11 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=84245
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:biochemistry, pore forming cytotoxic proteins, recombinant proteins, membranes artificial, genetic techniques, chemistry techniques analytical

Similar documents

Similar works from RUL:
  1. DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
  2. Part of speech tagging of slovene language using deep neural networks
  3. Automatic classification of buildings with deep learning
  4. Object detection and classification in aquatic environment using convolutional neural networks
  5. Superposition and compression of deep neutral networks
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. The preparation of photos' dataset and its classification using deep neural networks
  3. Prediction of geospatial raster data using convolutional neural networks
  4. Development of an advanced system for lane detection on GPU platforms
  5. Comparison of different deep neural network learning algorithms in autonomous driving

Back